Casio Calculator fx 50F User Manual

E
fx-50F PLUS  
User's Guide  
RCA502903-001V01  
 
• The following shows the notation used in the manual for menu items that appear on the  
display (which are executed by pressing a number key).  
Example:  
(Contrast)  
b
The notation in parentheses indicates the menu item accessed by the preceding number  
key.  
• The cursor key is marked with arrows indicating direction as shown in the  
illustration nearby. Cursor key operations are notated in this manual as:  
REPLAY  
,
,
, and  
.
e
f c d  
• The displays and illustrations (such as key markings) shown in this User’s Guide are for  
illustrative purposes only, and may differ somewhat from the actual items they represent.  
• The contents of this manual are subject to change without notice.  
• In no event shall CASIO Computer Co., Ltd. be liable to anyone for special, collateral,  
incidental, or consequential damages in connection with or arising out of the purchase or  
use of this product and items that come with it. Moreover, CASIO Computer Co., Ltd. shall  
not be liable for any claim of any kind whatsoever by any other party arising out of the use  
of this product and the items that come with it.  
Safety Precautions  
Be sure to read the following safety precautions before using this calculator. Keep this  
manual handy for later reference.  
Caution  
This symbol is used to indicate information that can result in personal injury or material  
damage if ignored.  
Battery  
• After removing the battery from the calculator, put it in a safe place where it will not  
get into the hands of small children and accidentally swallowed.  
• Keep batteries out of the reach of small children. If accidentally swallowed, consult  
with a physician immediately.  
• Never charge the battery, try to take the battery apart, or allow the battery to become  
shorted. Never expose the battery to direct heat or dispose of it by incineration.  
• Improperly using a battery can cause it to leak and damage nearby items, and can  
create the risk of fire and personal injury.  
• Always make sure that the battery’s positive  
correctly when you load it into the calculator.  
and negative  
ends are facing  
k
l
• Use only the type of battery specified for this calculator in this manual.  
Disposing of the Calculator  
• Never dispose of the calculator by burning it. Doing so can cause certain components  
to suddenly burst, creating the risk of fire and personal injury.  
 
E-2  
Operating Precautions  
• Be sure to press the  
key before using the calculator for the first time.  
O
• Even if the calculator is operating normally, replace the battery at least once every  
three years.  
A dead battery can leak, causing damage to and malfunction of the calculator. Never  
leave a dead battery in the calculator.  
• The battery that comes with this unit discharges slightly during shipment and  
storage. Because of this, it may require replacement sooner than the normal  
expected battery life.  
• Low battery power can cause memory contents to become corrupted or lost  
completely. Always keep written records of all important data.  
• Avoid use and storage of the calculator in areas subjected to temperature extremes.  
Very low temperatures can cause slow display response, total failure of the display,  
and shortening of battery life. Also avoid leaving the calculator in direct sunlight, near a  
window, near a heater or anywhere else it might be exposed to very high temperatures.  
Heat can cause discoloration or deformation of the calculator’s case, and damage to  
internal circuitry.  
• Avoid use and storage of the calculator in areas subjected to large amounts of  
humidity and dust.  
Take care never to leave the calculator where it might be splashed by water or exposed to  
large amounts of humidity or dust. Such conditions can damage internal circuitry.  
• Never drop the calculator or otherwise subject it to strong impact.  
• Never twist or bend the calculator.  
Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing  
where it might be subjected to twisting or bending.  
• Never try to take the calculator apart.  
• Never press the keys of the calculator with a ballpoint pen or other pointed object.  
• Use a soft, dry cloth to clean the exterior of the calculator.  
If the calculator becomes very dirty, wipe it off with a cloth moistened in a weak solution  
of water and a mild neutral household detergent. Wring out all excess liquid before wiping  
the calculator. Never use thinner, benzene or other volatile agents to clean the calculator.  
Doing so can remove printed markings and can damage the case.  
 
E-3  
Contents  
Getting Started .........................................................................................1  
Before using the calculator for the first time... ....................................................................1  
Resetting the Calculator to Initial Defaults..........................................................................1  
About this Manual...............................................................................................................1  
Safety Precautions ...................................................................................2  
Operating Precautions.............................................................................3  
Before starting a calculation... ................................................................6  
Turning On the Calculator...................................................................................................6  
Key Markings......................................................................................................................6  
Reading the Display ...........................................................................................................7  
Calculation Modes and Setup .................................................................7  
Selecting a Calculation Mode.............................................................................................7  
Calculator Setup.................................................................................................................8  
Clearing the Calculation Mode and Setup Settings..........................................................10  
Inputting Calculation Expressions and Values....................................10  
Inputting a Calculation Expression (Natural Input)...........................................................10  
Editing a Calculation.........................................................................................................12  
Finding the Location of an Error.......................................................................................13  
Basic Calculations..................................................................................14  
Arithmetic Calculations.....................................................................................................14  
Fractions...........................................................................................................................14  
Percent Calculations.........................................................................................................16  
Degree, Minute, Second (Sexagesimal) Calculations ......................................................17  
Calculation History and Replay.............................................................18  
Accessing Calculation History .........................................................................................18  
Using Replay....................................................................................................................19  
Calculator Memory Operations.............................................................19  
Using Answer Memory (Ans) ...........................................................................................19  
Using Independent Memory.............................................................................................21  
Using Variables.................................................................................................................22  
Clearing All Memory Contents .........................................................................................23  
Using , , and Scientific Constants.....................................................23  
π e  
Pi (π) and Natural Logarithm Base e ................................................................................23  
Scientific Constants..........................................................................................................24  
Scientific Function Calculations ..........................................................26  
Trigonometric and Inverse Trigonometric Functions.........................................................27  
Angle Unit Conversion......................................................................................................27  
Hyperbolic and Inverse Hyperbolic Functions ..................................................................28  
Exponential and Logarithmic Functions ...........................................................................28  
Power Functions and Power Root Functions....................................................................29  
 
E-4  
Coordinate Conversion (Rectangular  
Polar)................................................................29  
Other Functions................................................................................................................31  
Using 103 Engineering Notation (ENG).................................................33  
ENG Calculation Examples..............................................................................................33  
Complex Number Calculations (CMPLX) .............................................34  
Inputting Complex Numbers.............................................................................................34  
Complex Number Calculation Result Display...................................................................34  
Calculation Result Display Examples...............................................................................35  
Conjugate Complex Number (Conjg) ...............................................................................36  
Absolute Value and Argument (Abs, arg) .........................................................................36  
Overriding the Default Complex Number Display Format.................................................37  
Statistical Calculations (SD/REG) ........................................................38  
Statistical Calculation Sample Data .................................................................................38  
Performing Single-variable Statistical Calculations ..........................................................38  
Performing Paired-variable Statistical Calculations..........................................................42  
Statistical Calculation Examples ......................................................................................50  
Base- Calculations (BASE)..................................................................52  
n
n
Performing Base- Calculations .......................................................................................52  
Converting a Displayed Result to another Number Base.................................................54  
Using the LOGIC Menu....................................................................................................54  
Specifying a Number Base for a Particular Value.............................................................54  
Performing Calculations Using Logical Operations and Negative Binary Values .............55  
Built-in Formulas....................................................................................56  
Using Built-in Formulas ....................................................................................................56  
Built-in Formula List..........................................................................................................58  
Program Mode (PRGM) ..........................................................................62  
Program Mode Overview..................................................................................................62  
Creating a Program..........................................................................................................63  
Running a Program ..........................................................................................................64  
Deleting a Program...........................................................................................................64  
Inputting Commands ........................................................................................................65  
Command Reference .......................................................................................................65  
Appendix .................................................................................................71  
Calculation Priority Sequence..........................................................................................71  
Stack Limitations ..............................................................................................................72  
Calculation Ranges, Number of Digits, and Precision......................................................73  
Error Messages................................................................................................................74  
Before assuming malfunction of the calculator... .............................................................76  
Power Requirements..............................................................................76  
Specifications .........................................................................................77  
 
E-5  
Before starting a calculation...  
Turning On the Calculator  
k
Press  
. The calculator will enter the calculation mode (page 7) that it was in the last time  
O
you turned it off.  
Adjusting Display Contrast  
A
If the figures on the display become hard to read, try adjusting display contrast.  
1. Press (SETUP) (Contrast).  
• This will display the contrast adjustment screen.  
!N  
db  
L I GHT  
DARK  
CASIO  
2. Use  
and  
to adjust display contrast.  
d
e
3. After the setting is the way you want, press  
or  
(EXIT).  
!p  
A
Note  
You can also use  
and  
to adjust contrast while the calculation mode menu that  
+
-
appears when you press the  
key is on the display.  
,
Important!  
If adjusting display contrast does not improve display readability, it probably means that  
battery power is low. Replace the battery.  
Turning Off the Calculator  
A
Press  
(OFF).  
!A  
The following information is retained when you turn off the calculator.  
• Calculation modes and setup (page 7)  
• Answer Memory (page 19), independent memory (page 21), and variable memory (page  
22) contents  
Key Markings  
k
8
M–  
x!  
LOGIC  
M
A
DT CL  
Function  
M+  
Colors  
To perform the function  
Press the key.  
1
2
3
4
5
M–  
Text: Amber  
Text: Red  
Press  
Press  
and then press the key.  
and then press the key.  
!
a
M
DT  
Text: Blue  
In the SD or REG Mode, press the key.  
CL  
Text: Amber  
Frame: Blue  
In the SD or REG Mode, press  
the key.  
and then press  
!
6
Text: Amber  
Frame: Purple  
In the CMPLX Mode, press  
key.  
!
and then press the  
 
E-6  
Function  
Colors  
Text: Red  
To perform the function  
A
Press  
and then press the key (variable A).  
7
8
a
Frame: Green  
In the BASE Mode, press the key.  
LOGIC  
Text: Green  
In the BASE Mode, press the key.  
Reading the Display  
k
Input Expressions and Calculation Results  
A
This calculator can display both the expressions you input and calculation results on the  
same screen.  
Input expression  
(
)
×
+
×
2
-
2
5
4
3
Calculation result  
24  
Display Symbols  
A
The symbols described below appear on the display of the calculator to indicate the current  
calculation mode, the calculator setup, the progress of calculations, and more. In this  
manual, the expression “turn on” is used to mean that a symbol appears on the display, and  
“turn off” means that it disappears.  
The nearby sample screen shows the symbol.  
7
(
)
s i n 30  
05  
The symbol turns on when degrees (Deg) are selected for the default angle unit (page  
7
8). For information about the meaning of each symbol, see the section of this manual that  
describes each function.  
Calculation Modes and Setup  
Selecting a Calculation Mode  
k
Your calculator has six “calculation modes”.  
Selecting a Calculation Mode  
A
1. Press  
.
,
• This displays the calculation mode menu.  
• The calculation mode menu has two screens. Press  
to toggle between them.You  
,
can also switch between menu screens using  
and  
.
e
d
SD  
4
REG  
5
PRGM  
6
1
2
COMP CMPLX B3ASE  
 
E-7  
2. Perform one of the following operations to select the calculation mode you want.  
To select this calculation mode:  
COMP (Computation)  
Press this key:  
(COMP)  
b
(CMPLX)  
c
(BASE)  
d
(SD)  
e
f
g
CMPLX (Complex Number)  
BASE (Base n )  
SD (Single Variable Statistics)  
REG (Paired Variable Statistics)  
PRGM (Program)  
(REG)  
(PRGM)  
• Pressing a number key from  
to  
selects the applicable mode, regardless of which  
b
g
menu screen is currently displayed.  
Calculator Setup  
k
The calculator setup can be used to configure input and output settings, calculation  
parameters, and other settings. The setup can be configured using setup screens, which  
you access by pressing  
(SETUP). There are six setup screens, and you can use  
!,  
and  
to navigate between them.  
d
e
Specifying the Angle Unit  
A
You can specify degrees, radians, or grads as the angle unit to be applied for trigonometric  
function calculations.  
π
2
(90˚ =  
radians = 100 grads)  
Angle Unit  
Degrees  
Radians  
Grads  
Perform this key operation:  
(Deg)  
(Rad)  
(Gra)  
!,b  
!,c  
!,d  
Specifying the Display Digits  
A
You can select any one of three settings for the calculation result display digits: fixed  
number of decimal places (0 to 9 places), fixed number of significant digits (1 to 10 digits),  
or exponential display range (a choice of two settings).  
Exponential Display  
Perform this key operation:  
(Fix)  
!,eb  
(0) to (9)  
Number of Decimal Places  
a
j
(Sci)  
!,ec  
b
Significant Digits  
(1) to (9),  
j
(10)  
a
(Norm)  
(Norm2)  
c
!,ed  
(Norm1) or  
Exponential Display Range  
b
 
E-8  
The following explains how calculation results are displayed in accordance with the setting  
you specify.  
• From zero to nine decimal places are displayed in accordance with the number of decimal  
places (Fix) you specify. Calculation results are rounded off to the specified number of  
digits.  
Example: 100 ÷ 7 = 14.286 (Fix = 3)  
14.29 (Fix = 2)  
• After you specify the number of significant digits with Sci, calculation results are  
displayed using the specified number of significant digits and 10 to the applicable power.  
Calculation results are rounded off to the specified number of digits.  
Example: 1 ÷ 7 = 1.4286 × 10–1 (Sci = 5)  
1.429 × 10–1 (Sci = 4)  
• Selecting Norm1 or Norm2 causes the display to switch to exponential notation whenever  
the result is within the ranges defined below.  
Norm1: 10–2 > x, x1010  
>
Norm2: 10–9 > x, x1010  
>
Example: 100 ÷ 7 = 14.28571429 (Norm1 or Norm2)  
1 ÷ 200 = 5. × 10–3  
0.005  
(Norm1)  
(Norm2)  
Specifying the Fraction Display Format  
A
You can specify either improper fraction or mixed fraction format for display of calculation  
results.  
Fraction Format  
Mixed Fractions  
Improper Fractions  
Perform this key operation:  
(ab/c)  
(d/c)  
!,eeb  
!,eec  
Specifying the Complex Number Display Format  
A
You can specify either rectangular coordinate format or polar coordinate format for complex  
number calculation results.  
Complex Number Format  
Rectangular Coordinates  
Polar Coordinates  
Perform this key operation:  
i
(a +b )  
!,eeeb  
!,eeec  
(r Ƨ)  
Specifying the Statistical Frequency Setting  
A
Use the key operations below to turn statistical frequency on or off during SD Mode and  
REG Mode calculations.  
Frequency Setting  
Frequency On  
Perform this key operation:  
(FreqOn)  
(FreqOff)  
!,ddb  
!,ddc  
Frequency Off  
 
E-9  
Clearing the Calculation Mode and Setup Settings  
k
Perform the procedure described below to clear the current calculation mode and all setup  
settings and initialize the calculator to the following.  
Calculation Mode ................................COMP (Computation Mode)  
Angle Unit ...........................................Deg (Degrees)  
Exponential Display.............................Norm1  
Fraction Format ..................................ab/c (Mixed Fractions)  
i
Complex Number Format ...................a+b (Rectangular Coordinates)  
Frequency Setting ..............................FreqOn (Frequency On)  
Perform the following key operation to clear the calculation mode and setup settings.  
(CLR)  
(Setup)  
w
!9  
2
If you do not want to clear the calculator’s settings, press  
operation.  
in place of  
in the above  
A
w
Inputting Calculation Expressions  
and Values  
Inputting a Calculation Expression (Natural Input)  
k
The natural input system of your calculator lets you input a calculation expression just as  
it is written and execute it by pressing  
. The calculator determines the proper priority  
w
sequence for addition, subtraction, multiplication, division, functions and parentheses  
automatically.  
Example: 2 × (5 + 4) – 2 × (–3) =  
(
)
×
+
×
2
-
2
5
4
324  
2*(5+4)-  
2*-3w  
Inputting Scientific Functions with Parentheses (sin, cos,  
etc.)  
,
'
A
Your calculator supports input of the scientific functions with parentheses shown below.  
Note that after you input the argument, you need to press to close the parentheses.  
)
sin(, cos(, tan(, sin–1(, cos–1(, tan–1(, sinh(, cosh(, tanh(, sinh–1(, cosh–1(, tanh–1(, log(, ln(,  
e ^(, 10^(,  
(, 3 (, Abs(, Pol(, Rec(, arg(, Conjg(, Not(, Neg(, Rnd(  
'
'
Example: sin 30 =  
(
)
s i n 30  
s30)w  
05  
 
E-10  
Omitting the Multiplication Sign  
A
You can omit the multiplication sign in the following cases.  
• Immediately before an open parenthesis: 2 × (5 + 4)  
• Immediately before a scientific function with parentheses: 2 × sin(30), 2 ×  
• Before a prefix symbol (excluding the minus sign): 2 × h123  
• Before a variable name, constant, or random number: 20 × A, 2 × π, 2 × i  
(3)  
'
Final Closed Parenthesis  
A
You can omit one or more closed parentheses that come at the end of a calculation,  
immediately before the key is pressed.  
w
Example: (2 + 3) × (4 – 1) = 15  
(
)
(
+
×
2
3
4
1
(2+3)*  
(4-1w  
15  
• Simply press  
without closing the parentheses. The above applies to the closing  
w
parentheses at the end of the calculation only.Your calculation will not produce the correct  
result if you forget the closing parentheses that are required before the end.  
Scrolling the Screen Left and Right  
A
Inputting a mathematical expression that has more than 16 characters in it will cause the  
screen to scroll automatically, causing part of the expression to move off of the display. The  
” symbol on the left edge of the screen indicates that there is additional data off the left  
b
side of the display.  
Input Expression  
12345 + 12345 + 12345  
Displayed Expression  
+
+
345 12345 12345I  
Cursor  
• While the  
symbol is on the screen, you can use the  
key to move the cursor to the  
b
d
left and scroll the screen.  
• Scrolling to the left causes part of the expression to run off the right side of the display,  
which is indicated by the symbol on the right. While the symbol is on the screen,  
\
\
you can use the  
key to move the cursor to the right and scroll the screen.  
e
You can also press  
end.  
to jump to the beginning of the expression, or  
to jump to the  
f
c
Number of Input Characters (Bytes)  
A
As you input a mathematical expression, it is stored in memory called an “input area,”  
which has a capacity of 99 bytes. This means you can input up to 99 bytes for a single  
mathematical expression.  
Normally, the cursor that indicates the current input location on the display is either a  
fl ashing vertical bar ( ) or horizontal bar ( ). When the remaining capacity of the input area  
|
is eight bytes or less, the cursor changes to a flashing box ( ).  
k
If this happens, stop input of the current expression at some suitable location and calculate  
its result.  
 
E-11  
Editing a Calculation  
k
Insert Mode and Overwrite Mode  
A
The calculator has two input modes. The insert mode inserts your input at the cursor  
location, shifting anything to the right of the cursor to make room. The overwrite mode  
replaces the key operation at the cursor location with your input.  
Original Expression  
Pressing  
+
Insert Mode  
1+2 34  
1+2+ 34  
|
|
Cursor  
Overwrite Mode  
1+2 3 4  
1+2 + 4  
Cursor  
A vertical cursor ( ) indicates the insert mode, while a horizontal cursor ( ) indicates the  
|
overwrite mode.  
Selecting an Input Mode  
The initial default input mode setting is insert mode.  
To change to the overwrite mode, press:  
(INS).  
1D  
Editing a Key OperationYou Just Input  
A
When the cursor is located at the end of the input, press  
to delete the last key operation  
D
you performed.  
Example: To correct 369 × 13 so it becomes 369 × 12  
369*13  
×
369 13I  
D
×
369 1I  
2
×
369 12I  
Deleting a Key Operation  
A
With the insert mode, use  
and  
to move the cursor to the right of the key operation  
d
e
you want to delete and then press  
. With the overwrite mode, move the cursor to the  
D
key operation you want to delete and then press  
operation.  
. Each press of  
deletes one key  
D
D
Example: To correct 369 × × 12 so it becomes 369 × 12  
Insert Mode  
369**12  
××  
369 12I  
dd  
××  
369 I12  
D
×
369 I12  
Overwrite Mode  
369**12  
××  
369 12  
 
E-12  
ddd  
××  
369 12  
D
×
369 12  
Editing a Key Operation within an Expression  
A
With the insert mode, use  
and  
to move the cursor to the right of the key operation  
d
e
you want to edit, press  
to delete it, and then perform the correct key operation. With the  
D
overwrite mode, move the cursor to the key operation you want to correct and then perform  
the correct key operation.  
Example: To correct cos(60) so it becomes sin(60)  
Insert Mode  
c60)  
(
)
)
cos 60  
I
dddD  
)
I60  
s
(
s i n I60  
Overwrite Mode  
c60)  
dddd  
s
(
)
)
)
cos 60  
(
cos 60  
(
s i n 60  
Inserting Key Operations into an Expression  
A
Be sure to select the insert mode whenever you want to insert key operations into an  
expression. Use and to move the cursor to the location where you want to insert  
d
e
the key operations, and then perform them.  
Finding the Location of an Error  
k
If your calculation expression is incorrect, an error message will appear on the display when  
you press to execute it. After an error message appears, press the or key and  
w
d
e
the cursor will jump to the location in your calculation that caused the error so you can  
correct it.  
Example: When you input 14 ÷ 0 × 2 = instead of 14 ÷ 10 × 2 =  
(The following examples use the insert mode.)  
14/0*2w  
Mat h ERROR  
or  
e
d
÷
×
14 0I 2  
Location of Error  
 
E-13  
d1  
÷
×
14 1I0 2  
÷
×
14 10  
2
w
28  
• Instead of pressing  
or  
while an error message is displayed to find the location of  
e
d
the error, you could also press  
to clear the calculation.  
A
Basic Calculations  
Unless otherwise noted, the calculations in this section can be performed in any of the  
calculator’s calculation mode, except for the BASE Mode.  
Arithmetic Calculations  
k
Arithmetic calculations can be used to perform addition (  
), subtraction (  
),  
+
-
multiplication (  
), and division (  
).  
*
/
Example 1: 2.5 + 1 − 2 = 1.5  
+
×
2. 5  
×
1
4
2
5
2.5+1-2w  
7*8-4*5w  
15  
36  
Example 2: 7 × 8 − 4 × 5 = 36  
7
8
• The calculator determines the proper priority sequence for addition, subtraction,  
multiplication, and division automatically. See “Calculation Priority Sequence” on page 71  
for more information.  
Fractions  
k
Fractions are input using a special separator symbol ( ).  
{
Key Operation  
Display  
{
7
3
Improper  
7$3  
Fraction  
Numerator Denominator  
{
{
2
1
3
Mixed  
Fraction  
2$1$3  
Integer Numerator Denominator  
Note  
• Under initial default settings, fractions are displayed as mixed fractions.  
• Fraction calculation results are always reduced automatically before being displayed.  
Executing 2 4 = for example, will display the result 1 2.  
{
{
 
E-14  
Fraction Calculation Examples  
A
1
2
11  
Example 1: 3 + 1 = 4  
4
3
12  
+
3{1{4  
4{1{121{3{12  
3$1$4+  
1$2$3w  
1
2
1
2
Example 2: 4 – 3  
=
4
3{1{2  
4-3$1$2w  
1{2  
2
3
1
2
7
6
Example 3:  
+
=
(Fraction Display Format: d/c)  
+
2{3 1{2  
2$3+1$2w  
7{  
6
Note  
• If the total number of elements (integer + numerator + denominator + separator symbols)  
of a fraction calculation result is greater than 10, the result will be displayed in decimal  
format.  
• If an input calculation includes a mixture of fraction and decimal values, the result will be  
displayed in decimal format.  
You can input integers only for the elements of a fraction. Inputting non-integers will  
produce a decimal format result.  
Switching between Mixed Fraction and Improper Fraction  
Format  
A
To convert a mixed fraction to an improper fraction (or an improper fraction to a mixed  
fraction), press (d/c).  
!$  
Switching between Decimal and Fraction Format  
A
Use the procedure below to toggle a displayed calculation result between decimal and  
fraction format.  
1
2
1
2
Example: 1.5 = 1 , 1 = 1.5  
1.5w  
15  
$
1{  
1
{
2
The current fraction display format setting determines if a  
mixed or improper fraction is displayed.  
$
15  
Note  
The calculator cannot switch from decimal to fraction format if the total number of fraction  
elements (integer + numerator + denominator + separator symbols) is greater than 10.  
 
E-15  
Percent Calculations  
k
Inputting a value and with a percent (%) sign makes the value a percent. The percent (%)  
sign uses the value immediately before it as the argument, which is simply divided by 100 to  
get the percentage value.  
Percent Calculation Examples  
A
2
Example 1: 2 % = 0.02  
(
)
2%  
100  
(%)  
2!(  
w
002  
30  
20  
100  
Example 2: 150 × 20% = 30 (150 ×  
)
×
150 20%  
150*20  
(%)  
!(  
w
Example 3: What percent of 880 is 660?  
Example 4: Increase 2,500 by 15%.  
÷
660 880%  
660/880  
(%)  
!(  
w
75  
+
×
2500  
3500  
250021857%5  
2500+2500*  
(%)  
15!(  
w
Example 5: Reduce 3,500 by 25%.  
3500-3500*  
×
350022652%5  
(%)  
25!(  
Example 6: Reduce the sum of 168, 98, and 734 by 20%.  
168+98+734w  
w
+
+
168 98  
7314 000  
×
Ans Ans 20%  
(%)  
-G*20!(  
w
800  
Example 7: If 300 grams are added to a test sample originally weighing 500 grams, what is  
the percentage increase in weight?  
(
)
+
÷
500 300 500%  
(500+300)  
(%)  
/500!(  
w
160  
 
E-16  
Example 8: What is the percentage change when a value is increased from 40 to 46? How  
about to 48?  
Insert Mode  
(
(
)
)
÷
÷
40% 15  
40% 20  
46 40  
(46-40)/40  
(%)  
!(  
w
48 40  
eeeeY8w  
Degree, Minute, Second (Sexagesimal) Calculations  
k
You can perform calculations using sexagesimal values, and you can convert between  
sexagesimal and decimal.  
Inputting Sexagesimal Values  
A
The following is basic syntax for inputting a sexagesimal value.  
{Degrees} {Minutes} {Seconds}  
$
$
$
Example: To input 2°30´30˝  
2
30 30  
˚
˚
˚2 30 30  
2$30$30$w  
˚
˚
• Note that you must always input something for the degrees and minutes, even if they are  
zero.  
Example: To input 0°00´30˝, press  
.
0$0$30$  
Sexagesimal Calculation Examples  
A
The following types of sexagesimal calculations will produce sexagesimal results.  
• Addition or subtraction of two sexagesimal values  
• Multiplication or division of a sexagesimal value and a decimal value  
Example 1: 2°20´30˝ + 39´30˝ = 3°00´00˝  
+
2
2
20 30  
0
39 30  
˚
˚
˚
˚
˚
˚
2$20$30$+  
0$39$30$w  
3 0 0  
˚ ˚  
Example 2: 2°20´00˝ × 3.5 = 8°10´00˝  
×
20 3. 5  
˚
2$20$*  
3.5w  
8 10 0  
˚
˚
Converting between Sexagesimal and Decimal  
A
Pressing  
while a calculation result is displayed will toggle the value between  
$
sexagesimal and decimal.  
 
E-17  
Example: To convert 2.255 to sexagesimal  
2.255w  
2255  
$
$
2 15 18  
˚
˚
2255  
Calculation History and Replay  
Calculation history maintains a record of each calculation you perform, including the  
expressions you input and calculation results.You can use calculation history in the COMP,  
CMPLX, and BASE Modes.  
Accessing Calculation History  
k
The  
symbol in the upper right corner of the display indicates that there is data stored in  
`
calculation history. To view the data in calculation history, press  
. Each press of  
will  
f
f
scroll upwards (back) one calculation, displaying both the calculation expression and its  
result.  
Example:  
+
+
+
3
2
1
3
2
1
1+1w2+2w  
3+3w  
6
4
2
f
f
While scrolling through calculation history records, the  
symbol will appear on the display,  
$
which indicates that there are records below (newer than) the current one. When this  
symbol is turned on, press  
records.  
to scroll downwards (forward) through calculation history  
c
Important!  
• Calculation history records are all cleared whenever you press  
, when you change to a  
p
different calculation mode, and whenever you perform any reset operation.  
• Calculation history capacity is limited. Whenever you perform a new calculation while  
calculation history is full, the oldest record in calculation history is deleted automatically to  
make room for the new one.  
 
E-18  
Using Replay  
k
While a calculation history record is on the display, press  
or  
to display the cursor  
d
e
and enter the editing mode. Pressing  
displays the cursor at the beginning of the  
e
calculation expression, while  
displays it at the end. After you make the changes you  
d
want, press  
to execute the calculation.  
w
Example: 4 × 3 + 2.5 = 14.5  
4 × 3 – 7.1 = 4.9  
×
×
×
×
+
+
4
4
4
4
3
3
2 . 5  
4*3+2.5w  
d
145  
145  
145  
49  
2 . 5I  
3I  
DDDD  
3
7 . 1  
-7.1w  
Calculator Memory Operations  
Your calculator includes the types of memory described below, which you can use for  
storage and recall of values.  
Memory Name  
Description  
Answer Memory contains the result of the last calculation you  
performed.  
Answer Memory  
Independent  
Memory  
Independent memory can be used in all calculation modes, except  
for the SD Mode and the REG Mode.  
Six variables named A, B, C, D, X, and Y can be used for temporary  
storage of values. Variables can be used in all calculation modes.  
Variables  
The types of memory described above are not cleared when you press the  
to another mode, or turn off the calculator.  
key, change  
A
Using Answer Memory (Ans)  
k
The result of any new calculation you perform on the calculator is stored automatically in  
Answer Memory (Ans).  
 
E-19  
Ans Update and Delete Timing  
A
When using Ans in a calculation, it is important to keep in mind how and when its contents  
change. Note the following points.  
• The contents of Ans are replaced whenever you perform any of the following operations:  
calculate a calculation result, add a value to or subtract a value from independent  
memory, assign a value to a variable or recall the value of a variable, or input statistical  
data in the SD Mode or REG Mode.  
• In the case of a calculation that produces more than one result (like coordinate  
calculations), the value that appears first on the display is stored in Ans.  
• The contents of Ans do not change if the current calculation produces an error.  
• When you perform a complex number calculation in the CMPLX Mode, both the real part  
and the imaginary part of the result are stored in Ans. Note, however, that the imaginary  
part of the value is cleared if you change to another calculation mode.  
Automatic Insertion of Ans in Consecutive Calculations  
A
If you start a new calculation while the result of a previous calculation is still on the display,  
the calculator will insert Ans into the applicable location of the new calculation automatically.  
Example 1: To divide the result of 3 × 4 by 30  
×
3
4
3*4w  
/30w  
12  
04  
÷
Ans 30  
(Next)  
Pressing  
inputs Ans automatically.  
/
Example 2: To determine the square root of the result of 32 + 42  
3x+4xw  
2
3 2  
4
+
25  
5
(
'
Ans  
9w  
Note  
• As in the above examples, the calculator automatically inserts Ans as the argument of  
any calculation operator or scientific function you input while a calculation result is on the  
display.  
• In the case of a function with parenthetical argument (page 10), Ans automatically  
becomes the argument only in the case that you input the function alone and then press  
.
w
• Basically, Ans is inserted automatically only when the result of the previous calculation is  
still on the display, immediately after you executed the calculation that produced it. See  
the next section for information about inserting Ans into a calculation manually with the  
key.  
K
 
E-20  
Inserting Ans into a Calculation Manually  
A
You can insert Ans into a calculation at the current cursor location by pressing the  
key.  
K
Example 1: To use the result of 123 + 456 in another calculation as shown below  
123 + 456 = 579  
789 – 579 = 210  
123+456w  
579  
210  
789 Ans  
789-Kw  
Example 2: To determine the square root of 32 + 42, and then add 5 to the result  
2
3 2  
4
+
3x+4xw  
9K)+5w  
25  
10  
(
'
)
+
Ans  
5
Using Independent Memory  
k
Independent memory (M) is used mainly for calculating cumulative totals.  
If you can see the M symbol on the display, it means there is a non-zero value in  
independent memory.  
M symbol  
+
10M  
10  
Adding to Independent Memory  
A
While a value you input or the result of a calculation is on the display, press  
to add it to  
m
independent memory (M).  
Example: To add the result of 105 ÷ 3 to independent memory (M)  
÷
+
105 3M  
105/3m  
35  
(M–) to  
Subtracting from Independent Memory  
A
While a value you input or the result of a calculation is on the display, press  
1m  
subtract it from independent memory (M).  
Example: To subtract the result of 3 × 2 from independent memory (M)  
×
2M  
3
(M–)  
3*21m  
6
 
E-21  
Note  
Pressing  
or  
(M–) while a calculation result is on the display will add it to or  
1m  
m
subtract it from independent memory.  
Important!  
The value that appears on the display when you press  
or  
(M–) at the end of a  
1m  
m
calculation in place of  
is the result of the calculation (which is added to or subtracted  
w
from independent memory). It is not the current contents of independent memory.  
Viewing Independent Memory Contents  
A
Press  
(M).  
tm  
Clearing Independent Memory Contents (to 0)  
A
01t  
(STO)  
(M)  
m
Clearing independent memory will cause the M symbol to turn off.  
Calculation Example Using Independent Memory  
A
If the M symbol is displayed on your calculator screen, press  
(STO) (M) to  
01t m  
clear independent memory contents before performing the following operation.  
Example:  
23 + 9 = 32  
53 – 6 = 47  
23+9m  
53-6m  
−) 45 × 2 = 90  
99 ÷ 3 = 33  
(M–)  
45*21m  
99/3m  
(M)  
(Total) 22  
tm  
(Recalls value of M.)  
Using Variables  
k
The calculator supports six variables named A, B, C, D, X, and Y, which you can use to store  
values as required.  
Assigning a Value or Calculation Result to a Variable  
A
Use the procedure shown below to assign a value or a calculation expression to a variable.  
Example: To assign 3 + 5 to variable A  
(STO)  
3+51t  
(A)  
-
Viewing the Value Assigned to a Variable  
A
To view the value assigned to a variable, press  
and then specify the variable name.  
t
Example: To view the value assigned to variable A  
(A)  
t-  
Using a Variable in a Calculation  
A
You can use variables in calculations the same way you use values.  
Example: To calculate 5 + A  
(A)  
5+a-  
w
 
E-22  
Clearing the Value Assigned to a Variable (to 0)  
A
Example: To clear variable A  
(STO)  
(A)  
-
01t  
Calculation Example Using Variables  
A
Example: To perform calculations that assign results to variables B and C, and then use the  
variables to perform another calculation  
9 × 6 + 3  
= 1.425  
5 × 8  
×
×
÷
+
9
5
B
6
8
C
3
B
9*6+3  
(STO)  
(B)  
1t  
$
57  
40  
C
5*8  
(STO)  
(C)  
1t  
w
(B)  
(C)  
S$  
/
w
Sw  
1425  
Clearing All Memory Contents  
k
Perform the following key operation when you want to clear the contents of independent  
memory, variable memory, and Answer Memory.  
(CLR)  
19  
(Mem)  
w
1
• If you do not want to clear the calculator’s settings, press  
operation.  
in place of  
in the above  
A
w
Using , , and Scientific  
π e  
Constants  
e
Pi ( ) and Natural Logarithm Base  
k
π
The calculator supports input of pi (π) and natural logarithm base e into calculations. π and  
e are supported in all modes, except for the BASE Mode. The following are the values that  
the calculator applies for each of the built-in constants.  
π = 3.14159265358980 (1e(π))  
e = 2.71828182845904 (  
(e))  
Si  
 
E-23  
Scientific Constants  
k
Your calculator has 40 often-used scientific constants built in. Like π and e, each scientific  
constant has a unique display symbol. Scientific constants are supported in all modes,  
except for the BASE Mode.  
Inputting a Scientific Constant  
A
1. Press  
(CONST).  
17  
• This displays page 1 of the scientific constant menu.  
p
m
mn ne  
mμ  
1
2 3 4  
• There are 10 scientific command menu screens, and you can use  
and  
to  
e
d
navigate between them. For more information, see “Table of Scientific Constants” on  
page 25.  
2. Use  
and  
to scroll through the pages and display the one that contains the  
e
d
scientific constant you want.  
3. Press the number key (from  
want to select.  
to  
) that corresponds to the scientific constant you  
4
1
• This will input the scientific constant symbol that corresponds to the number key you  
press.  
p
p
m
1
mn ne  
2 3 4  
m
μ
m I  
\
0
• Pressing  
here will display the value of the scientific constant whose symbol is  
E
currently on the screen.  
p
m
167262171–  
27  
Example Calculations Using Scientific Constants  
A
Example 1: To input the constant for the speed of light in a vacuum  
C0299792458  
(CONST)  
17  
(c )  
E
dddd4  
0
Example 2: To calculate the speed of light in a vacuum ( c0 = 1/  
ε
0µ0  
)
(
'
÷
1
I
1/9  
0
 
E-24  
(
÷
÷
÷
1
1
1
'
ε
ε
ε
0
I
(CONST)  
17  
(ε )  
0
ddd4  
0
0
(
)
)
'
0
0
μ
μ
0
0
I
(CONST)  
17  
(ƫ )  
dd1  
)
0
(
'
E
299792458  
Table of Scientific Constants  
A
The numbers in the “No.column show the scientific constant menu page number on the left  
and the number key you need to press to select the constant when the proper menu page is  
displayed.  
No.  
Scientific Constant  
Symbol  
mp  
Value  
Unit  
kg  
1-1 Proton mass  
1.67262171×10–27  
1.67492728×10–27  
9.1093826×10–31  
1.8835314×10–28  
0.5291772108×10–10  
6.6260693×10–34  
5.05078343×10–27  
927.400949×10–26  
1.05457168×10–34  
7.297352568×10–3  
2.817940325×10–15  
2.426310238×10–12  
2.67522205×108  
1.3214098555×10–15  
1.3195909067×10–15  
10973731.568525  
1.66053886×10–27  
1.41060671×10–26  
–928.476412×10–26  
–0.96623645×10–26  
–4.49044799×10–26  
96485.3383  
1-2 Neutron mass  
mn  
kg  
1-3 Electron mass  
me  
kg  
1-4 Muon mass  
m
kg  
ƫ
2-1 Bohr radius  
a0  
h
m
2-2 Planck constant  
J s  
2-3 Nuclear magneton  
2-4 Bohr magneton  
µ N  
µ B  
J T–1  
J T–1  
J s  
3-1 Planck constant, rationalized  
3-2 Fine-structure constant  
3-3 Classical electron radius  
3-4 Compton wavelength  
4-1 Proton gyromagnetic ratio  
4-2 Proton Compton wavelength  
4-3 Neutron Compton wavelength  
4-4 Rydberg constant  
α
re  
m
λ c  
γ p  
m
s–1 T–1  
λ cp  
λ cn  
R∞  
u
m
m
m–1  
5-1 Atomic mass constant  
5-2 Proton magnetic moment  
5-3 Electron magnetic moment  
5-4 Neutron magnetic moment  
6-1 Muon magnetic moment  
6-2 Faraday constant  
kg  
µ p  
µ e  
µ n  
µ ƫ  
F
J T–1  
J T–1  
J T–1  
J T–1  
C mol–1  
C
6-3 Elementary charge  
e
1.60217653×10–19  
 
E-25  
No.  
Scientific Constant  
Symbol  
NA  
k
Value  
Unit  
mol–1  
J K–1  
6-4 Avogadro constant  
6.0221415×1023  
1.3806505×10–23  
7-1 Boltzmann constant  
7-2 Molar volume of ideal gas  
7-3 Molar gas constant  
Vm  
R
22.413996×10–3 m3 mol–1  
8.314472 J mol–1 K–1  
7-4 Speed of light in vacuum  
8-1 First radiation constant  
8-2 Second radiation constant  
8-3 Stefan-Boltzmann constant  
8-4 Electric constant  
C0  
C1  
C2  
σ
299792458  
3.74177138×10–16  
1.4387752×10–2  
m s–1  
W m2  
m K  
5.670400×10–8 W m–2 K–4  
ε 0  
8.854187817×10–12  
12.566370614×10–7  
2.06783372×10–15  
9.80665  
F m–1  
N A–2  
Wb  
9-1 Magnetic constant  
µ 0  
9-2 Magnetic flux quantum  
9-3 Standard acceleration of gravity  
9-4 Conductance quantum  
φ 0  
g
m s–2  
G0  
7.748091733×10–5  
S
Characteristic impedance of  
vacuum  
10-1  
Z0  
376.730313461  
273.15  
10-2 Celsius temperature  
t
K
10-3 Newtonian constant of gravitation  
10-4 Standard atmosphere  
G
6.6742×10–11 m3 kg–1 s–2  
atm  
101325  
Pa  
• Source: 2000 CODATA recommended values  
Scientific Function Calculations  
Unless otherwise noted, the functions in this section can be used in any of the calculator’s  
calculation modes, except for the BASE Mode.  
Scientific Function Calculation Precautions  
• When performing a calculation that includes a built-in scientific function, it may take  
some time before the calculation result appears. Do not perform any key operation on the  
calculator until the calculation result appears.  
To interrupt and on-going calculation operation, press  
.
A
Interpreting Scientific Function Syntax  
Text that represents a function’s argument is enclosed in braces ({ }). Arguments are  
normally {value} or {expression}.  
• When braces ({ }) are enclosed within parentheses, it means that input of everything  
inside the parentheses is mandatory.  
 
E-26  
Trigonometric and Inverse Trigonometric Functions  
k
sin(, cos(, tan(, sin–1(, cos–1(, tan–1  
(
Syntax and Input  
A
sin({n}), cos({n}), tan({n}), sin–1({n}), cos–1({n}), tan–1({n})  
Example: sin 30 = 0.5, sin–10.5 = 30 (Angle Unit: Deg)  
(
)
s i n 30  
s30)w  
)
0.5)w  
05  
30  
s i n–1 0. 5  
(
)
(sin–1  
1s  
Notes  
A
• These functions can be used in the CMPLX Mode, as long as a complex number is not  
used in the argument. A calculation like × sin(30) is supported for example, but sin(1 + )  
i
i
is not.  
• The angle unit you need to use in a calculation is the one that is currently selected as the  
default angle unit.  
Angle Unit Conversion  
k
You can convert a value that was input using one angle unit to another angle unit.  
After you input a value, press (DRG ) to display the menu screen shown below.  
1G  
'
(D): Degrees  
(R): Radians  
(G): Grads  
1
2
3
D
R
G
1 2 3  
π
2
Example: To convert  
radians and 50 grads both to degrees  
The following procedure assumes that Deg (degrees) is currently specified for the default  
angle unit.  
r
(
)
(π)  
(1e /2)  
π÷  
2
(DRG  
)
(R)  
1G ' 2 E  
90  
45  
50g  
(DRG  
501G  
)
'
(G)  
E
3
 
E-27  
Hyperbolic and Inverse Hyperbolic Functions  
k
sinh(, cosh(, tanh(, sinh–1(, cosh–1(, tanh–1  
(
Syntax and Input  
A
sinh({n}), cosh({n}), tanh({n}), sinh–1({n}), cosh–1({n}), tanh–1({n})  
Example: sinh 1 = 1.175201194  
(
)
s i nh  
1
(sinh)  
ws  
1)E  
1175201194  
Notes  
A
• After pressing  
to specify a hyperbolic function or  
to specify an inverse  
1w  
w
hyperbolic function, press  
,
, or  
.
t
s c  
• These functions can be used in the CMPLX Mode, but complex number arguments are  
not supported.  
Exponential and Logarithmic Functions  
10^(, e ^(, log(, ln(,  
k
Syntax and Input  
A
{
}
n
10^({n}) .......................... 10  
(Same applies to e^(.)  
(Common Logarithm)  
(Base {m} Logarithm)  
(Natural Logarithm)  
log({n}) ........................... log10{n}  
log({m},{n})..................... log{ }{n}  
m
ln({n}) ............................. log {n}  
e
Example 1: log216 = 4, log16 = 1.204119983  
l2,16)E  
(
)
g
l o 2, 16  
4
(
)
g
l o 16  
l16)E  
1204119983  
Base 10 (common logarithm) is assumed when no base is specified.  
Example 2: ln 90 (log 90) = 4.49980967  
e
(
)
I n49409980967  
I90)E  
Example 3: e10 = 22026.46579  
(
)
e
10  
ˆ
(ex)  
1I  
10)E  
2202646579  
 
E-28  
Power Functions and Power Root Functions  
k
x 2, x 3, x –1, ^(,  
(, 3 (,  
(
'
x
'
'
Syntax and Input  
A
{n} x2............................... {n}2  
{n} x3............................... {n}3  
{n} x–1 ............................. {n}–1  
(Square)  
(Cube)  
(Reciprocal)  
(Power)  
{
}
n
{(m)}^({n})....................... {m}  
({n}) .......................... {n}  
(Square Root)  
(Cube Root)  
(Power Root)  
'
3
({n}) ......................... 3 {n}  
'
}
m
({n}) .................. { {n}  
x
({m})  
'
Example 1: ( 2 + 1) ( 2 – 1) = 1, (1 + 1)2+2 = 16  
'
'
(
(
)
)
) (  
(
)
)
+
1
'
2
1
1
(
'
2
1
(92)+1)  
(92)-1)E  
(
) 16  
+
+
1
2
2
)
2
ˆ
(1+1)M2+2)E  
2
3
Example 2: –2 = –1.587401052  
(
2{3  
ˆ
-2M2$3)E  
-
1587401052  
Notes  
A
• The functions x2, x3, and x–1 can be used in complex number calculations in the CMPLX  
Mode. Complex number arguments are also supported for these functions.  
(, 3 (,  
( are also supported in the CMPLX Mode, but complex number  
'
x
• ^(,  
'
'
arguments are not supported for these functions.  
Coordinate Conversion (Rectangular  
Polar)  
k
Pol(, Rec(  
Your calculator can convert between rectangular coordinates and polar coordinates.  
o
o
Rectangular Coordinates (Rec)  
Polar Coordinates (Pol)  
 
E-29  
Syntax and Input  
A
Rectangular-to-Polar Coordinate Conversion (Pol)  
Pol(x, y)  
x : Rectangular coordinate x-value  
y: Rectangular coordinate y-value  
Polar-to-Rectangular Coordinate Conversion (Rec)  
Rec(r, Ƨ)  
r : Polar coordinate r-value  
Ƨ: Polar coordinate Ƨ-value  
Example 1: To convert the rectangular coordinates ( 2, 2 ) to polar coordinates  
''  
(Angle Unit: Deg)  
(
(
)
(
,'  
)2)  
(Pol)  
92)  
,92))E  
1+  
Po l  
Y
'
2
2
(View the value of Ƨ)  
(Y)  
t,  
45  
Example 2: To convert the polar coordinates (2, 30°) to rectangular coordinates  
(Angle Unit: Deg)  
(
)
(Rec)  
30)E  
1-  
2,  
Rec 2, 30  
1732050808  
Y
(View the value of y)  
(Y)  
t,  
1
Notes  
A
• These functions can be used in the COMP, SD, and REG Modes.  
• Calculation results show the first r value or x value only.  
• The r-value (or x-value) produced by the calculation is assigned to variable X, while the  
Ƨ-value (or y-value) is assigned to variable Y (page 22). To view the Ƨ-value (or y-value),  
display the value assigned to variable Y, as shown in the example.  
• The values obtained for Ƨ when converting from rectangular coordinates to polar  
coordinates is within the range –180°< Ƨ 180°.  
<
• When executing a coordinate conversion function inside of a calculation expression, the  
calculation is performed using the first value produced by the conversion (r-value or x-  
value).  
Example: Pol ( 2, 2 ) + 5 = 2 + 5 = 7  
''  
 
E-30  
Other Functions  
k
x !, Abs(, Ran#, n Pr , n Cr , Rnd(  
The x!, nPr, and nCr functions can be used in the CMPLX Mode, but complex number  
arguments are not supported.  
Factorial (!)  
A
Syntax: {n}! ({n} must be a natural number or 0.)  
Example: (5 + 3)!  
(
)
+
5
3
!
(5+3)  
(x!)  
1X  
E
40320  
Absolute Value (Abs)  
A
When you are performing a real number calculation, Abs( simply obtains the absolute value.  
This function can be used in the CMPLX Mode to determine the absolute value (size) of a  
complex number. See “Complex Number Calculations” on page 34 for more information.  
Syntax: Abs({n})  
Example: Abs (2 – 7) = 5  
(
)
Abs  
2
7
(Abs)  
2-7)E  
1)  
5
Random Number (Ran#)  
A
This function generates a three-decimal place (0.000 to 0.999) pseudo random number. It  
does not require an argument, and can be used the same way as a variable.  
Syntax: Ran#  
Example: To use 1000Ran# to obtain three 3-digit random numbers.  
1000Ran#  
(Ran#)  
10001.  
E
E
E
287  
613  
118  
1000Ran#  
1000Ran#  
• The above values are provided for example only. The actual values produced by your  
calculator for this function will be different.  
 
E-31  
Permutation ( P )/Combination ( C )  
A
n
r
n
r
Syntax: {n}P{m}, {n}C{m}  
Example: How many four-person permutations and combinations are possible for a group  
of 10 people?  
10P4  
(nPr)  
101*  
101/  
4E  
4E  
5040  
210  
10C4  
(nCr)  
Rounding Function (Rnd)  
A
You can use the rounding function (Rnd) to round the value, expression, or calculation result  
specified by the argument. Rounding is performed to the number of significant digits in  
accordance with the number of display digits setting.  
Rounding for Norm1 or Norm2  
The mantissa is rounded off to 10 digits.  
Rounding for Fix or Sci  
The value is rounded to the specified number of digits.  
Example: 200 ÷ 7 × 14 = 400  
÷
÷
÷
×
×
×
200  
200  
200  
Ans  
7
7
7
14  
14  
200/7*14E  
400  
(3 decimal places)  
(Fix)  
1Ne1  
3
400000  
(Internal calculation uses 15 digits.)  
200/7E  
*14E  
28571  
14400000  
Now perform the same calculation using the rounding (Rnd) function.  
200  
÷
(
7
200/7E  
28571  
(Calculation uses rounded value.)  
Ans 28571  
Rnd  
(Rnd)  
10  
E
 
E-32  
×
Ans  
14399994  
(Rounded result)  
*14E  
Using 103 Engineering Notation  
(ENG)  
Engineering notation (ENG) expresses quantities as a product of a positive number  
between 1 and 10 and a power of 10 that is always a multiple of three. There are two types  
of engineering notation, ENG and ENG  
.
/
,
Function  
Key Operation  
ENG  
ENG  
/
,
W
(
)
1W ,  
ENG Calculation Examples  
k
Example 1: To convert 1234 to engineering notation using ENG  
/
1234  
1234  
1234  
1234E  
1234  
1234  
1234  
W
W
03  
00  
Example 2: To convert 123 to engineering notation using ENG  
,
123  
123  
123  
123E  
123  
0123  
(
)
)
1W ,  
03  
06  
(
1W ,  
0000123  
 
E-33  
Complex Number Calculations  
(CMPLX)  
To perform the example operations in this section, first select CMPLX (  
calculation mode.  
) as the  
N2  
Inputting Complex Numbers  
k
i
Inputting Imaginary Numbers ( )  
A
i
In the CMPLX Mode, the  
key is used to input the imaginary number . Use  
( ) when  
W i  
W
inputting complex numbers using rectangular coordinate format (a+bi).  
Example: To input 2 + 3  
i
( )  
2+3W i  
+
2
3 iI  
Inputting Complex Number Values Using Polar Coordinate  
Format  
A
Complex numbers can also be input using polar coordinate format (r Ƨ).  
Example: To input 5 30  
(
)
51- 30  
5
30I  
Important!  
When inputting argument Ƨ, enter a value that indicates an angle in accordance with the  
calculator’s current default angle unit setting.  
Complex Number Calculation Result Display  
k
When a calculation produces a complex number result, RI symbol turns on in the upper  
right corner of the display and the only the real part appears at first. To toggle the display  
between the real part and the imaginary part, press  
(ReIm).  
1E  
Example: To input 2 + 1 and display its calculation result  
i
Before starting the calculation, you need to perform the following operation to change the  
a b  
complex number display setting to “ + ” as shown below.  
i
To select rectangular coordinate format:  
(SETUP)  
(a+bi)  
eee1  
1,  
+
2
i
( )  
2+W i E  
2
Displays real part.  
 
E-34  
+
2
i
(ReIm)  
1E  
1
Displays imaginary part.  
(
i
symbol turns on during imaginary part display.)  
Default Complex Number Calculation Result Display Format  
A
You can select either rectangular coordinate format or polar coordinate format for complex  
number calculation results.  
Imaginary axis  
Imaginary axis  
b
a + bi  
r
Real axis  
Real axis  
o
a
o
Rectangular Coordinates  
Polar Coordinates  
Use the setup screens to specify the default display format you want. For details, see  
“Specifying the Complex Number Display Format” (page 9).  
Calculation Result Display Examples  
k
a bi  
Rectangular Coordinate Format ( + )  
1,  
A
a b  
( +  
(SETUP)  
eee1  
)
i
Example 1: 2 × ( 3 + i) = 2 3 + 2i = 3.464101615 + 2i  
'
'
(
(
)+  
)
×
2
'
3
i
( )  
2*(93)+W i )E  
3464101615  
(
(
)+  
)
×
2
'
3
i
(ReIm)  
1E  
2
Example 2: 2 45 = 1 + 1i (Angle Unit: Deg)  
'
(
)
)
()  
45E  
92)1-  
'
2
2
45  
45  
1
1
(
'
(ReIm)  
1E  
 
E-35  
rƧ  
Polar Coordinate Format (  
)
A
1,  
(SETUP)  
eee2  
(rƧ)  
Example 1: 2 × ( 3 + i) = 2 3 + 2i = 4 30  
'
'
(
(
(
)+  
)+  
)
)
×
×
2
2
'
3
3
i
i
( )  
2*(93)+W i )E  
4
(
'
(ReIm)  
1E  
30  
symbol turns on during display of Ƨ-value.  
Example 2: 1 + 1 = 1.414213562 45 (Angle Unit: Deg)  
i
+
1
1 i  
( )  
1+1W i E  
1414213562  
+
1
1 i  
(ReIm)  
1E  
45  
Conjugate Complex Number (Conjg)  
k
¯z  
(
(
a
b
)
You can perform the operation below to obtain conjugate complex number  
=
+
for the  
i
z
a
b
complex number  
=
+
.
i
Example: Obtain the conjugate complex number of 2 + 3  
i
jg  
jg  
+
Con  
Con  
2
2
3 i  
3 i  
(Conjg)  
( )  
2+3W i )E  
1,  
2
)
+
(ReIm)  
1E  
-
3
Absolute Value and Argument (Abs, arg)  
k
You can use the procedure shown below to obtain the absolute value (|z|) and argument (arg)  
z
a
b
.
i
on the Gaussian plane for a complex number in the format  
=
+
Example:  
Imaginary axis  
To obtain the absolute value and argument of 2 + 2  
(Angle Unit: Deg)  
i
b = 2  
Real axis  
o
a = 2  
 
E-36  
Absolute Value:  
Argument:  
(
)
+
Abs  
2
2 i  
(Abs)  
( )  
2+2W i )E  
1)  
2828427125  
(
)
g
+
ar  
2
2 i  
(arg)  
( )  
2+2W i )E  
1(  
45  
Overriding the Default Complex Number Display Format  
k
You can use the procedures described below to override the default complex number  
display format and specify a particular display format for the calculation you are currently  
inputting.  
Specifying Rectangular Coordinate Format for a Calculation  
1- '  
A
Input  
a b  
) at the end of the calculation.  
i
(
+
Example: 2 2 45 = 2 + 2i (Angle Unit: Deg)  
'
(
(
)
)
+b2i  
+b2i  
()  
292)1- 45  
2
'
2
2
45  
45  
a
a
a b  
(
+
)
1- '  
i E  
2'  
(ReIm)  
1E  
Specifying Polar Coordinate Format for a Calculation  
A
Input  
(
rƧ) at the end of the calculation.  
1+ '  
Example: 2 + 2i = 2 2 45 = 2.828427125 45 (Angle Unit: Deg)  
'
( )  
E
2+2W i  
+
2
2 i  
r
θ
(
rƧ)  
1+ '  
2828427125  
+
2
2 i  
r
θ
(ReIm)  
1E  
45  
 
E-37  
Statistical Calculations (SD/REG)  
Statistical Calculation Sample Data  
k
Inputting Sample Data  
A
You can input sample data either with statistical frequency turned on (FreqOn) or off (FreqOff).  
The calculator’s initial default setting is FreqOn. You can select the input method you want  
to use with the setup screen statistical frequency setting (page 9).  
Maximum Number of Input Data Items  
A
The maximum number of data items you can input depends on whether frequency is on  
(FreqOn) or off (FreqOff).  
Frequency Setting  
FreqOn  
FreqOff  
Calculation Mode  
SD Mode  
40 items  
26 items  
80 items  
40 items  
REG Mode  
Sample Data Clear  
A
All sample data currently in memory is cleared whenever you change to another calculation  
mode and when you change the statistical frequency setting.  
Performing Single-variable Statistical Calculations  
k
To perform the example operations in this section, first select SD (  
) as the calculation  
N4  
mode.  
Inputting Sample Data  
A
Frequency On (FreqOn)  
The following shows the key operations required when inputting class values x1, x2, ...xn,  
and frequencies Freq1, Freq2, ... Freqn.  
{x1}  
{x2}  
(;) {Freq1}  
(;) {Freq2}  
(DT)  
(DT)  
1,  
1,  
m
m
{xn}  
(;) {Freqn}  
(DT)  
m
1,  
Note  
If the frequency of a class value is only one, you can input it by pressing {xn}  
(DT) only  
m
(without specifying the frequency).  
 
E-38  
Example: To input the following data  
Class Value (x )  
Frequency (Freq)  
24.5  
25.5  
26.5  
4
6
2
24  
.
5
;
4I  
=
(;)  
24.51,  
4
0
1
L i ne  
(DT)  
m
(DT) tells the calculator this is the end of the first data item.  
m
=
=
L i ne  
L i ne  
(;)  
25.51, 6m  
(DT)  
(DT)  
2
3
(;)  
26.51, 2m  
Frequency Off (FreqOff)  
In this case, input each individual data item as shown below.  
... xn  
{x1}  
(DT) {x2}  
(DT)  
{
}
(DT)  
m
m
m
Viewing Current Sample Data  
A
After inputting sample data, you can press  
to scroll through the data in the sequence  
c
you input it. The  
symbol indicates there is data below the sample that is currently on the  
$
display. The  
symbol indicates there is data above.  
`
Example: To view the data you input in the example under “Inputting Sample Data” on page  
38 (Frequency Setting: FreqOn)  
I
A
0
=
x 1  
c
c
245  
q
=
1
F r e  
4
 
E-39  
=
x 2  
c
c
255  
6
q
=
2
F r e  
When the statistical frequency setting is FreqOn, data is displayed in the sequence: x1,  
Freq1, x2, Freq2, and so on. In the case of FreqOff, it is displayed in the sequence: x1, x2,  
x3, and so on. You can also use  
to scroll in the reverse direction.  
f
Editing a Data Sample  
A
To edit a data sample, recall it, input the new value(s), and then press  
.
E
Example: To edit the “Freq3” data sample input under “Inputting Sample Data” on page 38  
q
q
=
F r e  
F r e  
3
3
Af  
2
3
=
3E  
Deleting a Data Sample  
A
To delete a data sample, recall it and then press  
(CL).  
1m  
Example: To delete the “x2” data sample input under “Inputting Sample Data” on page 38  
=
x 2  
Accc  
255  
2
=
L i ne  
(CL)  
1m  
Note  
• The following shows images of how the data appears before and after the delete  
operation.  
Before  
After  
x 1: 24.5  
x 2: 25.5  
x 3: 26.5  
Freq1: 4  
Freq2: 6  
Freq3: 2  
x 1: 24.5  
x 2: 26.5  
Freq1: 4  
Freq2: 2  
Shifted upwards.  
• When the statistical frequency setting is turned on (FreqOn), the applicable x-data and  
Freq data pair is deleted.  
 
E-40  
Deleting All Sample Data  
A
Perform the following key operation to delete all sample data.  
(CLR) (Stat)  
19  
1
E
If you do not want to delete all sample data, press  
in place of  
in the above operation.  
A
E
Statistical Calculations Using Input Sample Data  
A
To perform a statistical calculation, input the applicable command and then press  
. To  
E
determine the mean ( ) value of the current input sample data, for example, perform the  
o
operation shown below.  
x
xσn xσn–  
1 2 3 1  
(S-VAR)  
12  
x
1E  
2533333333  
* This is one example of possible calculation results.  
SD Mode Statistical Command Reference  
A
ƙx2  
x
(S-SUM)  
σ
(S-VAR)  
12 2  
11  
1
n
Obtains the sum of squares of the sample  
data.  
Obtains the population standard deviation.  
2
Σ(xi o)  
x2 x 2  
xσn  
=
=
Σ
Σ
i
n
(S-SUM)  
11  
2
3
1
ƙx  
σ
n
12(S-VAR)3  
x
–1  
Obtains the sum of the sample data.  
Obtains the sample standard deviation.  
=
x
x
i
Σ
Σ
2
Σ(xi o)  
n – 1  
xσn–1  
=
(S-SUM)  
11  
n
(S-VAR)  
12 e1  
minX  
Obtains the number of samples.  
n
= (number of -data items)  
x
Determines the minimum value of the  
samples.  
(S-VAR)  
12  
x¯  
Obtains the mean.  
(S-VAR)  
12 e2  
maxX  
Σx  
n i  
Determines the maximum value of the  
samples.  
=
o
 
E-41  
Performing Paired-variable Statistical Calculations  
k
To perform the example operations in this section, first select REG (  
N5  
) as the  
calculation mode.  
Regression Calculation Types  
A
The REG Mode lets you perform the seven types of regression listed below. The figures in  
the parentheses show the theoretical formulas.  
• Linear  
(y = a + bx)  
• Quadratic  
• Logarithmic  
e Exponential  
ab Exponential  
• Power  
(y = a+ bx + cx2)  
(y = a + b lnx)  
(y = aebx  
(y = abx)  
(y = axb)  
)
• Inverse  
(y = a + b/x)  
Each time you enter the REG Mode, you must select the type of regression calculation you  
plan to perform.  
Selecting the Regression Calculation Type  
1. Press  
(REG) to enter the REG Mode.  
N5  
• This displays the initial regression calculation selection menu. The menu has two  
screens, and you can use  
and  
to navigate between them.  
d
e
g
p
p
I nv Quad AB  
L i n Lo E x  
P
w
r
1 2 3 4  
1 2 3 Ex  
2. Perform one of the following operations to select the regression calculation you want.  
To select this regression type:  
Linear  
And press this key:  
(Lin)  
1
2
3
4
Logarithmic  
e Exponential  
Power  
(Log)  
(Exp)  
(Pwr)  
Inverse  
(Inv)  
e1  
e2  
e3  
Quadratic  
(Quad)  
(AB-Exp)  
ab Exponential  
Note  
You can switch to another regression calculation type from within the REG Mode, if you  
want. Pressing (S-VAR) (TYPE) will display a menu screen like the one shown in  
12  
3
step 1 above. Perform the same operation as the above procedure to select the regression  
calculation type you want.  
 
E-42  
Inputting Sample Data  
A
Frequency On (FreqOn)  
The following shows the key operations required when inputting class values (x1, y1), (x2,  
y2), ...(xn, yn), and frequencies Freq1, Freq2, ... Freqn.  
{x1}  
{x2}  
{y1}  
{y2}  
(;) {Freq1}  
(;) {Freq2}  
(DT)  
(DT)  
,
,
1,  
1,  
m
m
{xn} {yn}  
(;) {Freqn}  
(DT)  
m
,
1,  
Note  
If the frequency of a class value is only one, you can input it by pressing {xn} {yn} (DT)  
,
m
only (without specifying the frequency).  
Frequency Off (FreqOff)  
In this case, input each individual data item as shown below.  
{x1}  
{x2}  
{y1}  
{y2}  
(DT)  
(DT)  
,
,
m
m
{xn} {yn}  
(DT)  
,
m
Viewing Current Sample Data  
A
After inputting sample data, you can press  
to scroll through the data in the sequence  
c
you input it. The  
symbol indicates there is data below the sample that is currently on the  
$
display. The  
symbol indicates there is data above.  
`
When the statistical frequency setting is FreqOn, data is displayed in the sequence: x1, y1,  
Freq1, x2, y2, Freq2, and so on. In the case of FreqOff, it is displayed in the sequence: x1,  
y1, x2, y2, x3, y3, and so on. You can also use  
to scroll in the reverse direction.  
f
Editing a Data Sample  
A
To edit a data sample, recall it, input the new value(s), and then press  
.
E
Deleting a Data Sample  
A
To delete a data sample, recall it and then press  
(CL).  
1m  
Deleting All Sample Data  
A
See “Deleting All Sample Data” (page 41).  
Statistical Calculations Using Input Sample Data  
A
To perform a statistical calculation, input the applicable command and then press  
. To  
E
determine the mean ( or ) value of the current sample data, for example, perform the  
o
p
operation shown below.  
x
xσn xσn–  
1 2 31  
(S-VAR)  
(VAR)  
12  
1
x
1E  
115  
 
E-43  
y
y
y
σn  
σn–  
1 2 3 1  
(S-VAR)  
(VAR)  
e
12  
1
y
1E  
14  
* This is one example of possible calculation results.  
REG Mode Statistical Command Reference  
A
Sum and Number of Sample Command (S-SUM Menu)  
ƙx2  
ƙxy  
(S-SUM)  
(S-SUM)  
e3  
11  
1
11  
Obtains the sum of squares of the sample  
Obtains the sum of products of the sample  
x-data.  
x-data and y-data.  
x2 x 2  
xy x y  
=
=
Σ
Σ
Σ
Σ
i
i
i
ƙx2y  
(S-SUM)  
(S-SUM)  
d1  
11  
2
11  
ƙx  
Obtains the sum of squares of the sample  
Obtains the sum of the sample x-data.  
x-data multiplied by the sample y-data.  
=
x
x
i
Σ
Σ
x y x 2y  
2
=
Σ
Σ
i
i
(S-SUM)  
11  
3
n
ƙx3  
(S-SUM)  
11  
d2  
Obtains the number of samples.  
Obtains the sum of cubes of the sample  
n
= (number of -data items)  
x
x-data.  
x3 x 3  
ƙy2  
(S-SUM)  
11  
e1  
=
Σ
Σ
i
Obtains the sum of squares of the sample  
ƙx4  
(S-SUM)  
11  
d3  
y-data.  
y2 y 2  
=
Σ
Σ
i
Obtains the sum of the fourth power of the  
sample x-data.  
(S-SUM)  
11  
e2  
ƙy  
x4 x 4  
=
Σ
Σ
i
Obtains the sum of the sample y-data.  
=
y
y
i
Σ
Σ
Mean and Standard Deviation Commands (VAR Menu)  
(S-VAR)  
(VAR)  
(S-VAR) (VAR)  
1 2  
12  
1
1
12  
x¯  
x
σn  
Obtains the population standard deviation  
Obtains the mean of the sample x-data.  
of the sample x-data.  
Σx  
n i  
=
o
2
Σ(xi o)  
xσn  
=
n
 
E-44  
(S-VAR)  
(VAR)  
(S-VAR) (VAR)  
1 e2  
12  
1
3
12  
x
–1  
y
σn  
σn  
Obtains the sample standard deviation of  
Obtains the population standard deviation  
the sample x-data.  
of the sample y-data.  
2
2
Σ (yi y)  
Σ(xi o)  
yσn  
=
xσn–1  
=
n
n – 1  
(S-VAR)  
(VAR)  
e3  
–1 12  
1
y
σn  
Obtains the sample standard deviation of  
the sample y-data.  
(S-VAR)  
(VAR)  
12  
1 e1  
y¯  
Obtains the mean of the sample y-data.  
2
Σ (yi y)  
Σyi  
yσn–1  
=
=
p
n – 1  
n
Regression Coefficient and Estimated Value Commands for Non-  
quadratic Regression (VAR Menu)  
The calculation that is performed when one of these commands is performed depends on  
the regression type that is currently selected. For details about each regression calculation  
formula, see “Regression Coefficient and Estimated Value Calculation Formula Table” (page  
47).  
(S-VAR)  
(S-VAR)  
(S-VAR)  
(VAR)  
(VAR)  
(VAR)  
a
12  
12  
12  
1
1
1
ee1  
ee2  
ee3  
d1  
Obtains constant term a of the regression formula.  
b
Obtains coefficient b of the regression formula.  
r
Obtains correlation coefficient r.  
(S-VAR)  
(VAR)  
12  
1
xˆ  
Taking the value input immediately before this command as the y-value, obtains the  
estimated value of x based on the regression formula for the currently selected regression  
calculation.  
(S-VAR) (VAR)  
1 d2  
12  
yˆ  
Taking the value input immediately before this command as the x-value, obtains the  
estimated value of y based on the regression formula for the currently selected regression  
calculation.  
 
E-45  
Regression Coefficient and Estimated Value Commands for Quadratic  
Regression (VAR Menu)  
For details about the formula that is executed by each of these commands, see “Regression  
Coefficient and Estimated Value Calculation Formula Table” (page 47).  
(S-VAR)  
(S-VAR)  
(S-VAR)  
(VAR)  
(VAR)  
(VAR)  
a
12  
12  
12  
1
1
1
ee1  
ee2  
ee3  
d1  
Obtains constant term a of the regression formula.  
b
Obtains coefficient b of the regression formula.  
c
Obtains coefficient c of the regression formula.  
(S-VAR)  
(VAR)  
12  
1
xˆ 1  
Taking the value input immediately before this command as the y-value, uses the formula on  
page 47 to determine one estimated value of x.  
(S-VAR) (VAR)  
1 d2  
12  
xˆ 2  
Taking the value input immediately before this command as the y-value, uses the formula on  
page 47 to determine one more estimated value of x.  
(S-VAR) (VAR)  
1 d3  
12  
yˆ  
Taking the value input immediately before this command as the x-value, uses the formula on  
page 47 to determine the estimated value of y.  
Minimum and Maximum Value Commands (MINMAX Menu)  
(S-VAR)  
(MINMAX)  
minX  
12  
2
1
2
Obtains the minimum value of the sample x-data.  
(S-VAR)  
(MINMAX)  
maxX  
12  
2
Obtains the maximum value of the sample x-data.  
(S-VAR)  
(MINMAX)  
(MINMAX)  
minY  
12  
2
e1  
Obtains the minimum value of the sample y-data.  
(S-VAR)  
12  
maxY  
2
e2  
Obtains the maximum value of the sample y-data.  
 
E-46  
Regression Coefficient and Estimated Value Calculation  
Formula Table  
A
The following table shows the calculation formulas used by the regression coefficient and  
estimated value commands for each regression calculation type.  
Linear Regression  
Command  
Calculation Formula  
.
Regression Formula  
Constant Term a  
Σyi b Σxi  
a =  
b =  
n
.
.
n Σxiyi Σxi Σyi  
Regression Coefficient b  
Correlation Coefficient r  
2
2
.
(
)
n Σxi Σxi  
.
.
n Σxiyi Σxi Σyi  
r =  
2
2
2
2
.
.
(
)
(
)
{n Σxi Σxi }{n Σyi Σyi  
}
y – a  
=
m
Estimated Value  
m
b
n = a + bx  
Estimated Value ţ  
Quadratic Regression  
Command  
Calculation Formula  
2
Σyi  
Σxi  
Σxi  
Regression Formula  
Constant Term a  
a =  
b =  
b  
c  
(
)
(
)
n
n
n
2
2
2
2
.
.
Sxy Sx x Sx y Sxx  
Regression Coefficient b  
2
2
2
2
.
.
Sxx Sx x – (Sxx )  
2
2
.
Sx y Sxx Sxy Sxx  
Regression Coefficient c  
However,  
c =  
2
2
2
2
.
Sxx Sx x – (Sxx )  
2
.
2
3
(Σxi Σxi )  
Sxx = Σxi  
2
n
(Σxi)  
2
Sxx = Σxi –  
2
2
2
2
4
(Σxi )  
n
Sx x = Σxi  
.
n
(Σxi Σyi)  
Sxy = Σxiyi  
2
.
n
2
2
(Σxi Σyi)  
Sx y = Σxi yi  
n
Command  
Calculation Formula  
2
(
)
b + b 4c a y  
Estimated Value  
m1 =  
m1  
2c  
2
(
)
b b 4c a y  
Estimated Value  
Estimated Value  
m2  
n
m2 =  
2c  
2
n = a + bx + cx  
 
E-47  
Logarithmic Regression  
Command  
Calculation Formula  
.
Σy b Σlnx  
Regression Formula  
Constant Term a  
i
i
a =  
b =  
n
.
.
i
(
)y  
n Σ lnx  
Σlnx Σy  
i
i
i
i
Regression Coefficient b  
Correlation Coefficient r  
2
2
.
(
)
(
)
n Σ lnx Σlnx  
i
.
.
(
)y  
Σlnx Σy  
i
n Σ lnx  
i
i
i
r =  
2
2
2
2
.
.
(
)
(
)
(
)
{n Σ lnx Σlnx }{n Σy Σy  
}
i
i
i
i
m = ey – a  
b
Estimated Value  
Estimated Value  
m
n
n = a + blnx  
e Exponential Regression  
Command  
Calculation Formula  
.
Regression Formula  
Constant Term a  
Σlny b Σx  
i
i
a = exp  
(
)
n
.
.
y
n Σxiln i Σxi Σlnyi  
Regression Coefficient b  
Correlation Coefficient r  
b =  
r =  
2
2
.
(
)
n Σxi Σxi  
.
.
y
n Σxiln i Σxi Σlnyi  
2
2
2
2
.
.
(
)
(
)
(
)
{n Σxi Σxi }{n Σ lnyi Σlnyi  
}
lny – lna  
Estimated Value  
Estimated Value  
m
n
m =  
b
bx  
n = ae  
ab Exponential Regression  
Command  
Calculation Formula  
.
Regression Formula  
Constant Term a  
Σlnyi lnb Σxi  
a = exp  
(
)
n
.
.
y
n Σxiln i Σxi Σlnyi  
Regression Coefficient b  
Correlation Coefficient r  
b = exp  
(
2
2
)
.
.
(
y
)
n Σxi Σxi  
.
n Σxiln i Σxi Σlnyi  
r =  
2
2
2
2
.
.
(
)
(
)
(
)
{n Σxi Σxi }{n Σ lnyi Σlnyi  
}
 
E-48  
Command  
Calculation Formula  
lny – lna  
Estimated Value  
m
n
m =  
lnb  
x
Estimated Value  
n = ab  
Power Regression  
Command  
Calculation Formula  
.
Regression Formula  
Constant Term a  
Σlnyi b Σlnxi  
a = exp  
(
)
n
.
.
y
n Σlnxiln i Σlnxi Σlnyi  
Regression Coefficient b  
Correlation Coefficient r  
b =  
r =  
2
2
.
(
)
(
)
n Σ lnxi Σlnxi  
.
.
y
n Σlnxiln i Σlnxi Σlnyi  
2
2
2
2
.
.
(
)
(
)
(
)
(
)
{n Σ lnxi Σlnxi }{n Σ lnyi Σlnyi  
}
m = eln y – ln a  
Estimated Value  
Estimated Value  
m
n
b
b
n = ax  
Inverse Regression  
Command  
Calculation Formula  
–1  
.
Σyi b Σxi  
Regression Formula  
Constant Term a  
a =  
b =  
r =  
n
Sxy  
Sxx  
Regression Coefficient b  
Sxy  
Correlation Coefficient r  
However,  
.
Sxx Syy  
–1  
2
(Σxi  
)
–1  
2
Sxx = Σ(xi ) –  
n
2
(Σyi)  
2
Syy = Σyi –  
n
–1  
.
Σxi Σyi  
–1  
Sxy = Σ(xi )yi –  
n
 
E-49  
Command  
Calculation Formula  
y ba  
m =  
Estimated Value  
m
n
b
n = a +  
Estimated Value  
x
Statistical Calculation Examples  
k
This section provides some actual examples of statistical calculation examples as they are  
performed on your calculator.  
Example 1: The nearby table shows the pulse rates of 50  
Pulse Rate Students  
students who attend a high school for boys  
54 – 56  
56 – 58  
58 – 60  
60 – 62  
62 – 64  
64 – 66  
66 – 68  
68 – 70  
70 – 72  
72 – 74  
74 – 76  
1
2
2
5
8
9
8
6
4
3
2
that has a total enrollment of 1,000 students.  
Determine the mean and standard deviation of the  
sample data.  
Operation Procedure  
Select the SD Mode:  
(SD)  
N4  
Select FreqOn for the statistical frequency setting:  
(SETUP) (FreqOn)  
1N  
dd1  
Input the sample data:  
(DT)  
(;)  
571, 2m  
(DT)  
(;) (DT)  
591, 2m  
55m  
(;)  
(DT)  
(DT)  
(DT)  
(DT)  
(;)  
(DT)  
(DT)  
(DT)  
(DT)  
611, 5m  
631, 8m  
(;)  
651, 9m  
(;)  
691, 6m  
(;)  
731, 3m  
(;)  
671, 8m  
(;)  
711, 4m  
(;)  
751, 2m  
Obtain the mean:  
x
(S-VAR)  
( )  
12  
1
E
o
6568  
Obtain the sample standard deviation:  
12  
xσn1  
(S-VAR) (xσ  
)
3
E
–1  
n
4635444632  
 
E-50  
Example 2: The nearby data shows how the weight of a  
Number  
of Days  
20  
50  
80  
110  
140  
170  
200  
230  
260  
290  
320  
Weight  
(g)  
newborn at various numbers of days after birth.  
3150  
4800  
6420  
7310  
7940  
8690  
8800  
9130  
9270  
9310  
9390  
Obtain the regression formula and correlation coefficient  
produced by linear regression of the data.  
1
2
3
Obtain the regression formula and correlation coefficient  
produced by logarithmic regression of the data.  
Predict the weight 350 days after birth based on the  
regression formula that best fits the trend of the data in  
accordance with the regression results.  
Operation Procedure  
Enter the REG Mode and select linear regression:  
(REG)  
(Lin)  
N5  
Select FreqOff for the statistical frequency setting:  
(SETUP) (FreqOff)  
1
1N  
Input the sample data:  
dd2  
(DT)  
(DT)  
(DT)  
(DT)  
(DT)  
(DT)  
(DT)  
20,3150m  
80,6420m  
140,7940m  
200,8800m  
260,9270m  
320,9390m  
50,4800m  
(DT)  
(DT)  
110,7310m  
170,8690m  
230,9130m  
290,9310m  
(DT)  
(DT)  
Linear Regression  
1
Regression Formula Contant Term a:  
a
(S-VAR)  
(VAR)  
(VAR)  
(a)  
(b)  
12  
1
ee1  
E
E
E
4446575758  
Regression Coefficient b:  
12  
b
(S-VAR)  
1
ee2  
1887575758  
Correlation Coefficient:  
r
(S-VAR)  
12  
(VAR) (r)  
ee3  
1
0904793561  
Logarithmic Regression  
2
Select logarithmic regression:  
x
1
=
(S-VAR)  
(TYPE)  
(Log)  
2
12  
3
20  
Regression Formula Contant Term a:  
(S-VAR)  
a
(VAR)  
ee1  
(a)  
E
A12  
1
4209356544  
 
E-51  
Regression Coefficient b:  
12  
b
(S-VAR)  
(VAR) (b)  
ee2  
1
E
E
2425756228  
Correlation Coefficient:  
r
(S-VAR)  
12  
(VAR) (r)  
ee3  
1
0991493123  
Weight Prediction  
3
The absolute value of the correlation coefficient for logarithmic regression is closer to 1, so  
perform the weight prediction calculation using logarithmic regression.  
Obtain ţ when x = 350:  
y
350  
350  
(VAR) ( )  
d2 n E  
(S-VAR)  
12  
1
1000056129  
Base-n Calculations (BASE)  
To perform the example operations in this section, first select BASE (  
calculation mode.  
) as the  
N3  
Performing Base-n Calculations  
k
Specifying the Default Number Base  
A
Use the following keys to select a default number base.  
x
x
DEC ' HEX 10 BIN  
ex OCT e  
w M l i  
To select this number  
base:  
Press this key:  
Screen Indicator  
Decimal  
Hexadecimal  
Binary  
(DEC)  
(HEX)  
(BIN)  
d
H
b
x
M
l
i
Octal  
(OCT)  
o
1
Number base indicator  
b
1
 
E-52  
n
Example Base- Calculations  
A
Example 1: To select binary as the number base and calculate 12 + 12  
+
1
1
(BIN)  
1+1E  
Al  
b
o
10  
10  
Example 2: To select octal as the number base and calculate 78 + 18  
+
7
1
(OCT)  
7+1E  
Ai  
• Inputting an invalid value causes a Syntax ERROR.  
• In the BASE Mode, input of fractional (decimal) values and exponential values is not  
supported. Anything to the right of the decimal point of calculation results is cut off.  
Hexadecimal Value Input and Calculation Example  
A
Use the following keys to input the letters required for hexadecimal values (A, B, C, D, E, F).  
{
}{A} {B}  
{C} sin–1{D} cos–1 tan–1  
E
F
y e w s c t  
Example: To select hexadecimal as the number base and calculate 1F16 + 116  
+
1F  
1
(HEX)  
AM  
(F)  
1t +1E  
H
20  
Effective Calculation Ranges  
A
Number Base  
Effective Range  
Positive: 0  
x
111111111  
<
<
Binary  
Negative: 1000000000  
x
1111111111  
7777777777  
<
<
Positive: 0  
x
3777777777  
<
<
Octal  
Negative: 4000000000  
x
<
<
Decimal  
Hexadecimal  
–2147483648  
x
2147483647  
<
<
Positive: 0  
x
7FFFFFFF  
FFFFFFFF  
<
<
Negative: 80000000  
x
<
<
A Math ERROR occurs when a calculation result is outside of the applicable range for the  
current default number base.  
 
E-53  
Converting a Displayed Result to another Number Base  
k
Pressing  
(DEC),  
(HEX),  
(BIN), or  
(OCT) while a calculation result is displayed  
i
x
M
l
will convert the result to the corresponding number base.  
Example: To convert the decimal value 3010 to binary, octal, and hexadecimal format  
30  
(DEC)  
Ax 30E  
d
b
o
H
30  
11110  
36  
30  
30  
30  
(BIN)  
l
(OCT)  
(HEX)  
i
M
1E  
Using the LOGIC Menu  
k
In the BASE Mode, the  
key changes function to become a LOGIC menu display key.  
X
The LOGIC menu has three screens, and you can use  
them.  
and  
to navigate between  
d
e
o r  
xno r  
3
a1nd  
2
Screen 1  
g
x1o r  
2
N3e  
d
h
b
o
No t  
1 2 3 4  
Screen 3  
Screen 2  
Specifying a Number Base for a Particular Value  
k
You can specify a number base that is different from the current default number base while  
inputting a value.  
Specifying the Number Base during Input  
A
Inputting a decimal value of 3, for example, can be performed using the following key  
operation.  
(LOGIC)  
(d)  
3
X
d1  
d3I  
 
E-54  
n
Example Calculation Using Base- Specification  
A
Example: To perform the calculation 510 + 516, and display the result in binary  
+
d5 h5  
(BIN)  
(LOGIC)  
(d)  
Al  
X
d1  
(h)  
d2 5E  
b
(LOGIC)  
5+X  
1010  
Performing Calculations Using Logical Operations and  
Negative Binary Values  
k
Your calculator can perform 10-digit (10-bit) binary logical operations and negative value  
calculations. All of the examples shown below are performed with BIN (binary) set as the  
default number base.  
Logical Product (and)  
A
Returns the result of a bitwise product.  
Example: 10102 and 11002 = 10002  
1010and11100000  
(LOGIC)  
1100E  
(and)  
1
1010X  
b
b
b
b
Logical Sum (or)  
A
Returns the result of a bitwise sum.  
Example: 10112 or 110102 = 110112  
1011o r 11010  
(LOGIC)  
(or)  
2
1011X  
11010E  
11011  
Exclusive Logical Sum (xor)  
A
Returns the result of a bitwise exclusive logical sum.  
Example: 10102 xor 11002 = 1102  
1010xo r 1100  
(LOGIC)  
(xor)  
1010X  
e1  
1100E  
110  
Exclusive Logical Sum Negation (xnor)  
Returns the result of the negation of a bitwise exclusive logical sum.  
A
Example: 11112 xnor 1012 = 11111101012  
1111xno r 101  
1111110101  
(LOGIC)  
(xnor)  
3
1111X  
101E  
 
E-55  
Complement/Inversion (Not)  
A
Returns the complement (bitwise inversion) of a value.  
Example: Not(10102) = 11111101012  
(
)
No t 1010  
(LOGIC)  
(Not)  
e2  
X
1010)  
b
b
E
1111110101  
Negation (Neg)  
A
Returns the twos complement of a value.  
Example: Neg(1011012) = 11110100112  
(
)
g
Ne 10 1101  
(LOGIC)  
X
(Neg)  
e3  
101101)E  
1111010011  
Built-in Formulas  
Your calculator has 23 built-in formulas for mathematics and physics, which can be used in  
the COMP Mode.  
Using Built-in Formulas  
k
Selecting a Built-in Formula by Its Formula Number  
A
1. Press  
.
G
• This will display the message “Formula No.?”.  
2. Input the two-digit formula number (01 to 23) of the formula you want to recall.  
• For a list of formulas and their numbers, see the “Built-in Formula List” (page 58).  
Fo rmu l a  
No0. ?6–  
0
Q
\
Selecting a Built-in Formula by Scrolling  
A
1. Press  
.
G
2. Use  
and  
to scroll through the built-in formulas until the one you want to recall is  
c
f
on the display.  
Performing Calculation with a Built-in Formula  
A
The following example shows how to use Heron’s formula to determine the area of a triangle  
when the lengths of its three sides (8, 5, 5) are known.  
Operation Procedure  
Recall Heron’s formula:  
:
03 He r onFormul a  
Gccc  
 
E-56  
E
a
(Prompt for input for variable a)  
0
0
0
Input 8 for variable a:  
Input 5 for variable b:  
Input 5 for variable c:  
8E  
5E  
5E  
b
c
s
:
03 He r onFormul a  
12  
• As shown above, the calculation result appears after you assign values to all of the  
required variables.  
• Pressing  
while a calculation result is on the display will re-execute the formula from  
E
the beginning.  
Special Built-in Formula Variables (Formula Variables)  
A
When you perform a calculation using a built-in formula, you assign values to the variables  
of the formula and calculate the result. In addition to the a, b, and c variables we saw  
in Heron's formula above, there are also variables named r, t, v, ρ, and Ƨ. Since these  
variables are used only in built-in formulas, they are called formula variables.  
Values you assign to formula variables when you perform a calculation with a built-in  
formula are retained until you change to another calculation mode, perform a memory clear  
operation (  
19  
(CLR)  
(Mem)), or reset the calculator (  
19  
(CLR)  
(All)). This  
1
3
means that you can execute a built-in calculation multiple times leaving one or more of the  
variables assigned with the same values as a previous execution, if you want.  
Pressing  
after performing the operation under “Performing Calculation with a Built-in  
E
Formula” will display the variable assignment screen again, with the previously assigned  
values as the initial defaults.  
Prompt for input for variable a  
a
8
Value previously assigned to variable a  
If you want to leave the displayed value assigned to the variable, press . In this case,  
E
pressing  
will leave 8 assigned to variable a.  
E
Note  
Even if you select a different built-in formula, all variables that have the same names as the  
previously used formula will retain their current values.  
 
E-57  
Displaying a Built-in Formula  
A
While inputting values for the variables of a formula, you can display the formula by pressing  
(LOOK).  
1G  
(Value Input Screen)  
a
0
s
(LOOK)  
1G  
(
(
) (  
=
:
03  
S
'
s
s
a
• If the formula is too long to fit on the display use the  
the missing part.  
key to scroll to the right to view  
e
To clear the formula from the display, press  
(EXIT) or  
1p  
.
A
Built-in Formula List  
k
No. 01 Quadratic Equation Solution  
Solves a quadratic equation using values you specify for a, b, and c.  
2
2
(a 0, b 4ac 0)  
ax + bx + c = 0  
No. 02 Cosine Theorem  
For a triangle for which the lengths of two sides (b and c) and the angle (Ƨ) formed by them  
are known, determines the length of remaining side.  
2
2
a =  
b
+ c 2bc cos  
θ
(b, c > 0, 0˚< 180˚)  
θ
No. 03 Heron’s Formula  
Determines the area (S) of a triangle when the lengths of its three sides (a, b, c) are known.  
(a + b + c)  
S = s(s a)(s b)(s c) , s=  
2
(a + b > c > 0, b + c > a > 0, c + a > b > 0)  
No. 04 Normal Probability Function P(x)  
Uses Hastings’ estimate formula to determine the probability of a standard normal  
distribution P(x) illustrated below when the standardized variate (x) is known.  
Px)  
2
t
x
1
2π  
2
P(x) =  
e dt  
(0 x < 1 × 1050  
)
x
Important!  
Since this is an estimate formula, proper precision may not be obtainable.  
 
E-58  
No. 05 Normal Probability Function Q(x)  
Uses Hastings’ estimate formula to determine the probability of a standard normal  
distribution Q(x) illustrated below when the standardized variate (x) is known.  
Qx)  
2
|
|
t
x
1
2π  
2
Q(x) =  
e
dt  
0
(0 x < 1 × 1050  
)
x
Important!  
Since this is an estimate formula, proper precision may not be obtainable.  
No. 06 Coulomb’s Law  
Determines the force (F) between two charges of quantities Q and q, over a separation of r.  
Qq  
1
4πε0  
F =  
(Ƥ0: permittivity)  
(r > 0)  
Units: Q, q : C, r : m  
2
r
No. 07 Resistance of a Conductor  
Determines resistance R of a conductor when its length ( ) and cross sectional area (S),  
and the resistance of its component material ( ρ) are known.  
Units:  
: m, S : m2, ρ : ·m, R : Ω  
R =  
(S, , > 0)  
S
No. 08 Magnetic Force  
Determines the motive force (F) in a conductor with electric current (I) flowing through it  
and placed in a magnetic field of uniform magnetic force density (B), when the length of the  
Ƨ
conductor is and the angle formed by the conductor and magnetic field is  
.
|
|
(
> 0, 0˚θ 90˚)  
F = IB sinθ  
Units: B : T, I : A, : m, Ƨ: ° (degrees), F : N  
No. 09 Change in Terminal Voltage of R in an RC Series Circuit  
Determines the terminal voltage (VR) of terminal R at time t in an RC series circuit when  
voltage V is applied to a circuit with a resistance of R and capacitance of C.  
t/CR  
VR = Ve  
(C, R, t > 0)  
Units: R : , C : F, t : seconds, V and V R : V  
 
E-59  
No. 10 Voltage Gain  
Determines the voltage gain (G) of an amplifier circuit when input voltage (E) and output  
voltage () are known.  
E
Units: E and E Ϣ: V, G : d B  
G[dB] = 20 log10  
[dB]  
(E E >0)  
(
)
E
No. 11 Impedance in an LRC Series Circuit  
Determines the impedance (Z) of an LRC series circuit of frequency f, when resistance (R),  
coil inductance (L), and capacitance (C) are known.  
2
1
1
ωC  
2
2
Z = R + 2π f L−  
=
R + ωL−  
(
)
(
(
)
)
2π f C  
(R, f, L, C>0)  
Units: f : Hz, L : H, C : F, R and Z : Ω  
No. 12 Impedance in an LRC Parallel Circuit  
Determines the impedance (Z) of an LRC parallel circuit of frequency f, when resistance (R),  
coil inductance (L), and capacitance (C) are known.  
1
Z =  
2
2
1
R
1
(R, f, L, C>0)  
+
2π f C−  
( ) (  
)
2π f L  
Units: f : Hz, C : F, L : H, R and Z : Ω  
No. 13 Frequency of Electric Oscillation  
Determines the harmonic oscillation frequency (f1) of a series resonance circuit when the  
coil self-inductance (L) and capacitance (C) are known.  
1
(L, C>0)  
f
1
=
L
C
f
Units:  
: H, : F, 1: Hz  
2π LC  
No. 14 Distance of Drop  
Determines the distance of drop (S) after t seconds of an object dropped straight down  
(gravitational direction) at an initial velocity of v1 (air friction disregarded).  
1
2
2
(g: gravitational acceleration, t > 0)  
S = v1t + gt  
Units: v 1: m/s, t : seconds, S : m  
 
E-60  
No. 15 Cycle of Simple Pendulum  
Determines the cycle (T) of a simple pendulum with a string of length  
.
Units:  
: m, T : seconds  
T = 2π  
(g: gravitational acceleration, >0)  
g
No. 16 Cycle of Spring Pendulum  
Determines the cycle of simple oscillation (T) of a spring pendulum when the mass of the  
weight (m) and the spring constant of the spring (k) are known.  
m
k
(m, k > 0)  
T = 2π  
Units: m : kg, k : N/m, T : seconds  
No. 17 Doppler Effect  
Determines the oscillation frequency (f) heard by an observer when both the sound source  
and observer are moving, when the sound source oscillation frequency (f1), acoustic velocity  
(v), sound source movement speed (v1) and observer movement speed (u) are known.  
vu  
f = f  
1
v v1, f > 0, (vu)/( vv1) > 0  
1
(
)
vv  
1
Units: v , v 1 and u : m/s, f 1 and f : Hz  
No. 18 Equation of State of Ideal Gas  
Determines the pressure (P) of a gas when the number of mols (n), absolute temperature (T),  
and volume (V) are known.  
nRT  
Units: n : mol, T : K, V : m3, P : N/m3  
P =  
(R: gas constant, n, T, V > 0)  
V
No. 19 Centrifugal Force  
Determines the centrifugal force (F) for an object of mass m moving at velocity v in a circular  
pattern of radius r.  
2
v
Units: m : kg, v : m/s, r : m, F : N  
F = m  
(m, v, r > 0)  
r
No. 20 Elastic Energy  
Determines the elastic energy (U) of an object when its elastic constant (K) and elongated  
length (x) are known.  
1
2
2
Units: K : N/m, x : m, U : J  
(K, x > 0)  
U= Kx  
 
E-61  
No. 21 Bernoulli’s Theorem  
Determines the fixed value (C) of an inviscid fluid (steady flow, incompressible fluid) when  
the flow velocity (v), location (height) (z), specific weight ( ρ), and pressure (P) are known.  
1
2
P
2
(g: gravitational acceleration, v, z, , P > 0)  
Units: v : m/s, z : m, ρ : kgf/m3, P : kgf/m2, C : m2/s2  
C = v + +gz  
No. 22 Calculations Using a Stadia (Height)  
Determines the difference in elevation (h) from the transit to the leveling rod after a transit  
is used to read the length on the leveling rod ( ) between the upper and lower stadia lines,  
and the angle of elevation (Ƨ).  
1
2
Ƨ
(K and C: stadia constants, 0° <  
Units:  
90°, > 0)  
<
h = K sin2θ + Csinθ  
: m, Ƨ: ° (degrees), h : m  
No. 23 Calculations Using a Stadia (Distance)  
Determines the horizontal distance (S) from the transit to the leveling rod after a transit is  
used to read the length on the leveling rod ( ) between the upper and lower stadia lines,  
and the angle of elevation (Ƨ).  
2
(K and C: stadia constants, 0° < θ < 90°, > 0)  
S = K cos θ+ Ccosθ  
Units:  
: m, Ƨ: ° (degrees), S : m  
Program Mode (PRGM)  
You can use the PRGM Mode (  
) to create and store programs for calculations you  
,g  
need to perform on a regular basis.You can include any calculation that can be performed  
in the COMP, CMPLX, BASE, SD, or REG Mode in a program.  
Program Mode Overview  
k
Specifying a Program Run Mode  
A
Though you create and run programs in the PRGM Mode, each program has a “run mode”  
that it runs in.You can specify COMP, CMPLX, BASE, SD, or REG as a program’s run  
mode. This means you need to think about what you want your program to do and select the  
appropriate run mode.  
Program Memory  
A
Program memory has a total capacity of 680 bytes, which can be shared by up to four  
programs. Further program storage is not possible after program memory becomes full.  
 
E-62  
Creating a Program  
k
Creating a New Program  
A
Example: To create a program that converts inches to centimeters (1 inch = 2.54 cm)  
? A : A × 2.54  
1. Press  
2. Press  
(PRGM) to enter the PRGM Mode.  
,g  
ED I T RUN DEL  
1
2
3
(EDIT).  
b
Program areas that already contain program data (P1 through P4)  
g
EDI T Pr o  
P-1234 r a6m70  
Remaining program memory capacity  
3. Press the number key that corresponds to an unused program area number.  
• This displays the run mode selection menu. Use  
screen 1 and screen 2.  
and  
to switch between menu  
e
d
:
:
MODE COMP CMPLX  
MODE BASE SD REG  
1
2
3 4 5  
Screen 1  
Screen 2  
4. Press the number key that corresponds to the mode you want to assign as the program’s  
run mode.  
• Here, select  
(COMP) on screen 1. This selects COMP  
b
as the run mode, and displays the program editing  
screen.  
I
000  
Important!  
You cannot change the run mode of a program once it has been assigned. A run mode can  
be assigned only when you are creating a new program.  
5. Input the program.  
:
×
?
A A  
2. 54 010  
• Here we will input the program shown below.  
Program  
? A : A × 2.54  
(P-CMD)  
(?)  
(A)  
!d  
!~  
b
Key Operation  
(STO)  
- w  
(A)  
a- *c.fe  
(P-CMD) displays a special program command input screen. See “Inputting  
!d  
Commands” on page 65 for more information.  
 
E-63  
6. After inputting the program, press  
or  
(EXIT).  
!5  
A
To run the program you just created, press  
here to display the RUN Program  
w
screen. For more information, see “Running a Program” below.  
To return to the normal calculation screen, press  
to enter the COMP Mode.  
,b  
Editing an Existing Program  
A
1. Press  
(PRGM)  
(EDIT) to display the EDIT Program screen.  
b
,g  
2. Use number keys  
you want to edit.  
through  
to select the program area that contains the program  
b
e
3. Use  
and  
to move the cursor around the program, and perform the required  
e
d
operations to edit the contents of the program or to add new contents.  
• Pressing jumps to the beginning of the program, while jumps to the end.  
f
c
4. After you finish editing the program, press  
or  
(EXIT).  
!5  
A
Running a Program  
k
You can run a program in the PRGM Mode or from another mode.  
Running a Program from Outside the PRGM Mode  
A
1. Press  
.
5
P1 P2 P3 P4  
1 2 3 4  
2. Use number keys  
through  
to select a program area and execute its program.  
b
e
Running a Program in the PRGM Mode  
A
1. Press  
(PRGM) to display the PRGM Mode initial screen.  
,g  
2. Press  
(RUN).  
c
• This will display the RUN Program screen.  
Program areas that already contain program data (P1 through P4)  
g
RUN P r o r am  
Remaining program memory capacity  
P-1234 670  
3. Use number keys  
you want to run.  
through  
to select the program area that contains the program  
b
e
• This will execute the program in the program area you select.  
What to do if an error message appears  
A
Press  
or  
. This will display the editing screen for the program, with the cursor located  
e
d
at the location where the error was generated so you can correct the problem.  
Deleting a Program  
k
You can delete an existing program by specifying its program area number.  
Deleting the Program in a Specific Program Area  
A
1. Press  
(PRGM) to display the PRGM Mode initial screen.  
,g  
 
E-64  
2. Press  
(DEL).  
d
Program areas that already contain program data (P1 through P4)  
Remaining program memory capacity  
g
DELETE Pr o r am  
P-1234 670  
3. Use number keys  
to delete.  
through  
to select the program area whose program you want  
b
e
• The symbol next to the number of the program area  
that contained the program you just deleted will turn off,  
and the remaining program memory capacity value will  
increase.  
g
DELETE Pr o r am  
P-1234 680  
Inputting Commands  
k
Inputting Special Program Commands  
A
1. While the program editing screen is on the display, press  
(P-CMD).  
!d  
• This displays page 1 of the command menu.  
:
?
^
1 2 3 4  
to scroll through the pages and display the one that contains the  
2. Use  
and  
e
d
command you want.  
3. Use number keys  
through  
to select and input the command you want.  
b
e
Note  
To input a separator symbol (:), press  
.
w
Functions that Can be Input as Program Commands  
A
You can input the settings and other operations that you perform during normal calculations  
as program commands. For more information, see the “Command Reference” below.  
Command Reference  
k
This section provides details on each of the commands that you can use in programs.  
Commands that have in the title can be input on the screen that appears when you  
g
press  
(P-CMD) or  
.
5
!d  
Basic Operation Commands  
A
g
? (Input Prompt)  
Syntax ? {variable}  
Function  
Displays the input prompt “{variable}?” and assigns the input value to a  
variable.  
Example  
? A  
 
E-65  
(Variable Assignment)  
Syntax {expression ; ?} {variable}  
Function  
Assigns the value obtained by the element on the left to the variable on the  
right.  
Example  
A+5 A  
: (Separator Code)  
Syntax {statement} : {statement} : ... : {statement}  
Function  
Example  
Separates statements. Does not stop program execution.  
? A : A2 : Ans2  
(Output Command)  
^
Syntax  
{statement}  
{statement}  
^
Function  
Pauses program execution and displays the result of the current execution.  
The  
symbol is turned on while program execution is paused by this  
Q
command.  
Example  
? A : A2  
Ans2  
^
Unconditional Jump Command  
A
g
Goto ~ Lbl  
Syntax  
Function  
Example  
Goto n : .... : Lbl n or Lbl n : .... : Goto n (n = integer from 0 to 9)  
Execution of Goto n jumps to corresponding Lbl n.  
? A : Lbl 1 : ? B : A × B ÷ 2  
Goto 1  
^
Important!  
A Syntax ERROR occurs if there is no corresponding Lbl n in the same program where  
Goto n is located.  
Conditional Jump Commands and Conditional Expressions  
A
g
S
Syntax  
{expression} {relational operator} {expression}  
{statement2} : ....  
{statement1} :  
1
2
S
{expression}  
{statement1} : {statement2} : ....  
S
Function  
Conditional branching command used in combination with relational  
operators (=, , >, , <, ).  
>
<
Syntax : {statement1} is executed if the condition to the left of the  
1
S
command is true, and then {statement2} and everything after it is executed  
in sequence. {statement1} is skipped if the condition to the left of the  
S
command is false, and then {statement2} and everything after it is executed.  
Syntax : A non-zero evaluation result of the condition to the left of the  
2
S
command is interpreted as “true”, so {statement1} is executed, followed by  
{statement2} and everything after it in succession. A zero evaluation result  
of the condition to the left of the  
command is interpreted as “false”, so  
S
{statement1} is skipped, and {statement2} and everything after it is executed.  
 
E-66  
Example  
Lbl 1 : ? A : A  
0
(A)  
S '  
Goto 1  
>
^
=, , >, , <, (Relational Operators)  
>
<
Syntax  
{expression} {relational operator} {expression}  
Function  
These commands evaluate the expressions on either side, and return a value  
of true (1) or false (0). These commands are used in combination with the  
branching command , and when structuring the {conditional expression} of  
S
If statements and While statements.  
Example  
See the entries for  
(page 68).  
(page 66), If statement (page 67), and While statement  
S
Note  
These commands evaluate the expressions on either side, and return 1 if true and 0 if false,  
and store the result in Ans.  
Control Structure Commands/If Statement  
A
g
The If statement is used to control program execution branching according to whether the  
expression following If (which is the branching condition) is true or false.  
If Statement Precautions  
• An If must always be accompanied by a Then. Using an If without a corresponding Then  
will result in a Syntax ERROR.  
• An expression, Goto command, or Break command can be used for the {expression*}  
following Then and Else.  
If~Then (~Else) ~IfEnd  
Syntax  
If {conditional expression} : Then {expression*} : Else {expression*} : IfEnd :  
{statement} : ...  
Function  
• The statements following Then are executed up to Else, and then the  
statements following IfEnd are executed when the conditional statement  
following If is true. The statements following Else and then the statements  
following IfEnd are executed when the conditional statement following If is  
false.  
• Else {expression} may be omitted.  
• Always include the IfEnd:{statement}. Omitting it will not cause an error,  
but certain program contents can cause unexpected execution results by  
everything after the If statement.  
Example 1  
Example 2  
? A : If A < 10 : Then 10A  
Else 9A  
IfEnd : Ans×1.05  
^
^
? A : If A > 0 : Then A × 10 A : IfEnd : Ans×1.05  
Control Structure Commands/For Statement  
A
g
The For statement repeats execution of the statements between For and Next as long as  
the value assigned to the control variable is within the specified range.  
For Statement Precautions  
A For statement must always be accompanied by a Next statement. Using a For without a  
corresponding Next will result in a Syntax ERROR.  
 
E-67  
For~To~Next  
Syntax  
For {expression (starting value)} {variable (control variable)} To {expression  
(ending value)} : {statement} : ... {statement} : Next : ....  
Function  
Execution of the statements from For to Next repeats as the control variable  
is incremented by 1 with each execution, starting from the starting value.  
When the value of the control value reaches the ending value, execution  
jumps to the statement following Next. Program execution stops if there is no  
statement following Next.  
Example  
For 1 A To 10 : A2 B : B  
Next  
^
For~To~Step~Next  
Syntax  
For {expression (starting value)} {variable (control variable)} To {expression  
(ending value)} Step {expression (step)} : {statement} : ... {statement} :  
Next : ....  
Function  
Example  
Execution of the statements from For to Next repeats as the control variable  
is incremented by the step amount with each execution, starting from the  
starting value. Except for that, this command is the same as For~To~Next.  
For 1 A To 10 Step 0.5 : A2 B : B  
Next  
^
Control Structure Commands/While Statement  
A
g
While~WhileEnd  
Syntax  
Function  
While {conditional expression} : {statement} : ... {statement} : WhileEnd : ....  
The statements from While to WhileEnd are repeated while the conditional  
expression following While is true (non-zero). When the conditional  
expression following While becomes false (0), the statement following  
WhileEnd is executed.  
Example  
? A : While A < 10 : A2  
A+1 A : WhileEnd : A÷2  
^
Note  
If the condition of the While statement is false the first time this command is executed,  
execution jumps directly to the statement following WhileEnd without executing the  
statements from While to WhileEnd even once.  
Program Control Commands  
A
g
Break  
Syntax  
.. : {Then ; Else ; } Break : ..  
S
Function  
This command forces a break in a For or While loop, and jumps to the next  
command. Normally, this command is used inside of a Then statement in  
order to apply a Break condition.  
Example  
? A : While A > 0 : If A > 2 : Then Break : IfEnd : WhileEnd : A  
^
Setup Commands  
A
These commands function the same way as the calculator’s various setup settings. For  
more information, see “Calculator Setup” on page 8.  
 
E-68  
Important!  
With some setup commands, the settings you configure remain in effect even after you  
fi nish running the program.  
Angle Unit Commands  
Deg, Rad, Gra  
(COMP, CMPLX, SD, REG)  
Syntax  
.. : Deg : ..  
.. : Rad : ..  
.. : Gra : ..  
Operation  
Function  
(SETUP)  
(SETUP)  
(SETUP)  
(Deg)  
(Rad)  
(Gra)  
!,  
!,  
!,  
b
c
d
These commands specify the angle unit setting.  
Display Format Command  
Fix  
(COMP, CMPLX, SD, REG)  
Syntax  
Operation  
.. : Fix {n} : .. (n = an integer from 0 to 9)  
(SETUP) (Fix) to  
!, eb  
a
j
Function  
This command fixes the number of decimal places (from 0 to 9) for output of  
calculation results.  
Sci  
(COMP, CMPLX, SD, REG)  
Syntax  
.. : Sci {n} : .. (n = an integer from 0 to 9)  
Operation  
(SETUP)  
!, ec  
(Sci)  
to  
a
j
Function  
This command fixes the number of significant digits (from 1 to 10) for output  
of calculation results.  
Pressing  
digits.  
(SETUP)  
!,  
(Sci) and then  
specifies 10 significant  
ec  
a
Norm  
(COMP, CMPLX, SD, REG)  
Syntax  
.. : Norm {1 ; 2} : ..  
Operation  
Function  
(SETUP)  
(Norm)  
or  
!, ed  
b
c
This command specifies either Norm1 or Norm2 for output of calculation  
results.  
Statistical Frequency Command  
FreqOn, FreqOff  
(SD, REG)  
Syntax  
.. : FreqOn : ..  
.. : FreqOff : ..  
Operation  
Function  
(SETUP)  
(FreqOn)  
(FreqOff)  
!,  
db  
(SETUP)  
!,  
dc  
This command turns statistical frequency on (FreqOn) or off (FreqOff).  
 
E-69  
Clear Commands  
A
ClrMemory  
(COMP, CMPLX, BASE)  
Syntax  
Operation  
Function  
.. : ClrMemory : ..  
(CLR)  
This command clears all variables (A, B, C, D, X, Y, M) to zero.  
(Mem)  
b
!j  
Note  
To clear a specific variable, use 0 {variable}.  
ClrStat  
(SD, REG)  
Syntax  
Operation  
Function  
.. : ClrStat : ..  
(CLR)  
(Stat)  
b
!j  
This command clears all statistical sample data currently in memory.  
Independent Memory Commands  
A
M+, M–  
(COMP, CMPLX, BASE)  
Syntax  
Operation  
Function  
.. : {expression} M+ : .. / .. : {expression} M– : ..  
(M–)  
M+ adds the value of the expression to independent memory, while M–  
subtracts it.  
/
l !l  
Rounding (Rnd) Command  
A
Rnd(  
(COMP, CMPLX, SD, REG)  
Syntax  
.. : {expression} : Rnd(Ans : ..  
Operation  
Function  
(Rnd)  
!a  
This command rounds a calculation result in accordance with the number of  
digits specified by the display format.  
Number Base Commands  
A
Dec, Hex, Bin, Oct  
(BASE)  
Syntax  
Operation  
Function  
.. : Dec : .. / .. : Hex : .. / .. : Bin : .. / .. : Oct : ..  
(DEC)/ (HEX)/ (BIN)/ (OCT)  
These commands specify the number base for base-n calculations.  
x
M
l
I
Statistical Data Input Command  
A
DT  
(SD, REG)  
Syntax  
.. : {expression (x-value)} ; {expression (Freq-value)} DT : ..  
..................... SD Mode, FreqOn  
.. : {expression (x-value)} DT : ..  
..................... SD Mode, FreqOff  
.. : {expression (x-value)} , {expression (y-value)} ; {expression (Freq-value)}  
DT : ..  
...................REG Mode, FreqOn  
.. : {expression (x-value)} , {expression (y-value)} DT : ..  
...................REG Mode, FreqOff  
 
E-70  
Important!  
To input a semicolon (;) in the above syntax, press  
(;). To input a comma (,), press  
!,  
.
,
Operation  
Function  
(Inputs DT.)  
l
Use this command to input one set of sample data. The DT command  
functions the same way as the  
Mode.  
key (DT key) in the SD Mode and REG  
l
Functions Not Supported in Programs  
A
The following functions are not supported inside of functions.  
• Calculation result conversion functions (ENG , ENG , Sexagesimal Decimal  
/
,
Conversion, Fraction Decimal Conversion)  
• Display switching (  
displayed  
(ReIm)) while a complex number calculation result is  
!w  
• Reset (  
!j  
(CLR)  
(All)  
)
w
d
• Setup information clear (  
(CLR)  
(Setup)  
)
w
!j  
c
Appendix  
Calculation Priority Sequence  
k
The calculator performs calculations you input in accordance with the priority sequence shown  
below.  
Basically, calculations are performed from left to right.  
Calculations enclosed in parentheses are given priority.  
Sequence  
Operation Type  
Description  
1
Parenthetical Functions  
Pol(, Rec(  
sin(, cos(, tan(, sin (, cos (, tan (, sinh(, cosh(,  
–1  
–1  
–1  
–1  
–1  
–1  
tanh(, sinh (, cosh (, tanh  
3
(
log(, ln(, ^(, 10^(,  
(,  
'
(
'
e
arg(, Abs(, Conjg(  
Not(, Neg(, Rnd(  
2
3
–1  
r
g
2
Functions Preceded by Values  
Power, Power Root  
Percent  
,
,
,
!, ° ´ ˝, °, ,  
x
x
x
(
x
x
^(,  
%
'
b
3
4
Fractions  
/
a
c
Prefix Symbols  
(–) (minus sign)  
d, h, b, o (number base symbol)  
5
6
Statistical Estimated Value  
Calculations  
,
,
,
1
m
n
m
m
2
n
r
n
r
C
Permutation, Combination  
Complex Number Symbol  
P ,  
 
E-71  
Sequence  
Operation Type  
Multiplication, Division  
Omitted Multiplication Sign  
Description  
7
×, ÷  
Multiplication sign can be omitted immediately  
before π , e, variables, scientific constants (2π , 5A,  
π A, 3mp, 2i, etc.), and parenthetical functions  
(2 (3), Asin(30), etc.)  
'
8
9
Addition, Subtraction  
Relational Operators  
Logical Product  
+, −  
=, , >, <,  
,
>
<
10  
11  
and  
Logical Sum, Exclusive Logical or, xor, xnor  
Sum, Exclusive Negative  
Logical Sum  
Note  
If a calculation contains a negative value, you may need to enclose the negative value in  
parentheses. If you want to square the value –2, for example, you need to input: (–2)2. This is  
because x2 is a function preceded by a value (Priority 2, above), whose priority is greater than the  
negative sign, which is a prefix symbol (Priority 4).  
–22 = –4  
-cxw  
(–2)2 = 4  
(-c)xw  
Multiplication and division, and multiplication where the sign is omitted are the same priority  
(Priority 7), so these operations are performed from left to right when both types are mixed in the  
same calculation. Enclosing an operation in parentheses causes it to be performed first, so the  
use of parentheses can result in different calculation results.  
1
( )  
1
1
2
=
b
c. i w  
i
i
$
$
{
{
2
1
2
( )  
(c. i )w  
(2 ) = –  
b
i
i
Stack Limitations  
k
This calculator uses memory areas called “stacks” for temporary storage of lower calculation priority  
sequence values, commands, and functions. The “numeric stack” has 10 levels and the “command  
stack” has 24 levels as shown in the illustration below.  
Numeric Stack Command Stack  
1
2
3
4
5
4
1
2
3
4
5
6
7
҂
2
3
4
5
1
2
3
4
5
1
2
3
4
5
6
7
ѿ
҂
ѿ
A Stack ERROR occurs when the calculation you are performing causes the capacity of a stack to  
be exceeded.  
 
E-72  
Note  
When inputting a value in the CMPLX Mode, each value takes up two stack levels: one for the real  
part and one for the imaginary part. This means that the numeric stack has only five levels in the  
CMPLX Mode.  
Calculation Ranges, Number of Digits, and Precision  
k
The following table shows the general calculation range (value input and output range), number of  
digits used for internal calculations, and calculation precision.  
–99  
99  
Calculation Range  
Internal Calculation  
1×10  
15 digits  
to 9.999999999×10 or 0  
In general, 1 at the 10th digit for a single calculation. Error in the  
case of a calculation result in exponential format is 1 at the least  
significant digits of the mantissa. Errors are cumulative in the case of  
consecutive calculations.  
Precision  
Function Calculation Input Ranges and Precision  
A
Functions  
Input Range  
9
DEG  
RAD  
GRA  
DEG  
RAD  
GRA  
DEG  
RAD  
GRA  
0
0
0
0
0
0
|
|
|
|
|
|
| < 9×10  
<
<
<
<
<
<
x
x
x
x
x
x
sin  
| < 157079632.7  
x
10  
| < 1×10  
9
| < 9×10  
cos  
| < 157079632.7  
x
10  
| < 1×10  
Same as sin , except when  
|
|
|
| = (2 –1)×90.  
x
x
x
x
n
tan  
Same as sin , except when  
| = (2 –1)×π/2.  
x
x
n
Same as sin , except when  
| = (2 –1)×100.  
x
n
–1x  
–1x  
–1x  
sin  
0
0
0
|
|
|
|
|
|
|
|
1
<
<
<
<
<
<
<
x
x
x
x
cos  
tan  
99  
99  
9.999999999×10  
230.2585092  
sinh  
x
coshx  
–1x  
–1x  
sinh  
0
1
0
0
4.999999999×10  
99  
<
<
<
<
cosh  
4.999999999×10  
<
x
99  
–1  
tanh  
|
|
|
9.999999999×10  
<
<
x
–1x  
x
tanh  
|
9.999999999×10  
99  
x
log /ln  
x
0 <  
9.999999999×10  
99  
<
x
x
x
10  
–9.999999999×10  
99.99999999  
<
<
x
 
E-73  
Functions  
Input Range  
230.2585092  
99  
x
–9.999999999×10  
100  
<
<
e
x
0
< 1×10  
'
x
<
x
x2  
x
x
x
|
|
|
| < 1×1050  
| < 1×10100  
1/  
;
0
G
x
x
< 1×10100  
3
'
x
|
!
x
0
69 ( is an integer)  
<
<
x
x
10  
0
1
< 1×10 , 0  
n n r  
(
,
are integers)  
are integers)  
n n r  
<
<
<
<
n
{
r
n n r  
P
n r  
100  
!/( – )!} < 1×10  
10  
0
1
< 1×10 , 0  
(
,
<
<
<
<
n
n r  
r
C
n r  
100  
100  
!/ ! < 1×10  
or 1  
!/( – )! < 1×10  
<
n n r  
99  
|
|, | | < 9.999999999×10  
x
x
y
2
Pol(  
,
x y  
)
2
99  
+
9.999999999×10  
99  
<
y
0
9.999999999×10  
<
<
r
Rec( , θ)  
r
θ: Same as sinx  
100  
|
0
|,  
,
b c  
b c  
< 1×10  
a
<
°’ ”  
,
100  
|
| < 1×10  
x
Decimal Sexagesimal Conversions  
0°0 0 9999999°59 59  
´ ˝ <  
|
|
<
´
˝
x
100  
> 0: –1×10  
<
log < 100  
y
x
x
x
x
= 0: > 0  
y
y
m
y
^(  
)
x
< 0:  
=
,
(
,
m n  
are integers)  
n
2
+1  
n
100  
However: –1×10  
<
log | | < 100  
y
x
100  
> 0:  
= 0: > 0  
< 0: = 2 +1,  
0, –1×10  
< 1/ log < 100  
G
y
y
y
x
x
x
x
y
2
+1  
m
n
x
'
y
(
0;  
,
m n  
are integers)  
G
n
m
100  
However: –1×10  
< 1/ log | | < 100  
x
y
Total of integer, numerator, and denominator must be 10 digits or less (including  
separtor symbols).  
b
/
a
c
3
y
x
^( ),  
,
,
'
!, P ,  
C
type functions require consecutive internal calculation, which can  
'
x
y
x n r n r  
result in accumulation of errors that occur within each individual calculation.  
Errors are cumulative and tend to be large in the vicinity of a function’s singular point and  
inflection point.  
Error Messages  
k
An error message will appear on the screen if you perform a  
calculation that causes a calculator’s limit to be exceeded, or if you  
try to perform some operation that is not allowed.  
Mat h ERROR  
Sample Error Message  
 
E-74  
Recovering from an Error Message  
A
You can recover from an error message by performing the key operations described below,  
regardless of the error type.  
Press  
or  
to display the editing screen for the calculation expression you input immediately  
d
e
before the error occurred, with the cursor positioned at the location that caused the error. For  
more information, see “Finding the Location of an Error” on page 13.  
Pressing  
will clear the calculation expression you input immediately before the error occurred.  
A
Note that a calculation expression that causes an error will not be included in calculation history.  
Error Message Reference  
A
This section lists all of the error messages that the calculator displays, as well as their causes and  
what you need to do to avoid them.  
Math ERROR  
Cause  
Action  
• An intermediate or the final result of the calculation falls outside of the  
allowable calculation range.  
• An input value is outside the allowable input range.  
You are trying to perform an illegal mathematical operation (such as  
division by zero).  
• Check your input values and reduce the number of digits, if required.  
• When using independent memory or a variable as the argument of a  
function, make sure that the memory or variable value is within the  
allowable range for the function.  
For information about the allowable value input range, see “Calculation Ranges, Number of Digits,  
and Precision” on page 73.  
Stack ERROR  
Cause  
The calculation has causes the capacity of the numeric stack or the  
command stack to be exceeded.  
Action  
• Simplify the calculation expression so it does not exceed the capacity of  
the stacks.  
Try splitting the calculation into two or more parts.  
For information about the capacities of the stacks, see “Stack Limitations” on page 72.  
Syntax ERROR  
Cause  
Action  
The calculation has a format problem.  
Check the syntax and make the required corrections.  
Arg ERROR  
Cause  
Action  
The calculation has a problem with how an argument being used.  
Check how arguments are being used and make the required corrections.  
 
E-75  
Data Full  
Cause  
You are attempting to store sample data in the SD Mode or REG Mode  
when the allowable number of data samples are already stored in memory.  
Action  
Keep the number of data samples within the allowable limit. For more  
information, see “Maximum Number of Input Data Items” on page 38.  
Go ERROR  
Cause  
A program (that you created in the PRGM Mode) has a “Goto ” command  
n
without a corresponding “Lbl ” label.  
n
Action  
Either add a “Lbl ” for the “Goto ” command, or delete the applicable “Goto  
n
n
” command.  
n
Before assuming malfunction of the calculator...  
k
Perform the following steps whenever an error occurs during a calculation or when calculation  
results are not what you expected. If one step does not correct the problem, move on to the next  
step. Note that you should make copies of important copies of important data before performing  
these steps.  
Check the calculation expression to make sure it does not include any errors.  
Make sure that you are using the correct mode for the type of calculation you are trying to  
perform.  
1
2
If the above steps do not restore normal operation, press the  
a self-check of its status as it starts up. If the calculator discovers a problem, it will return its  
calculation mode and setup to their initial defaults, and clear all data currently in memory.  
key. The calculator will perform  
3
4
p
If step  
does not restore normal operation, initialize all modes and settings by pressing  
3
(CLR)  
!j  
(All)  
.
w
d
Power Requirements  
Your calculator has a TWO WAY POWER system that combines a solar cell with a button  
battery (LR44). Unlike solar cell-only calculators that operate only when light is present, a  
TWO WAY POWER system calculator keeps on operating even in the dark. (Of course, you  
will need enough light to be able to read the display contents.)  
Replacing the Battery  
A
Dim display characters, especially when using the calculator where lighting is dim, or slow  
display response when you turn on the calculator indicates that button battery power is low.  
Replace the battery whenever you notice these symptoms.You should also regularly replace  
the battery at least once every three years, even if the calculator is operating normally.  
Important!  
Removing the button battery from the calculator causes independent memory contents and  
values assigned to variables to be cleared.  
 
E-76  
Screw  
1. Press  
(OFF) to turn off the calculator.  
!A  
To ensure that you do not accidentally turn on the  
calculator while replacing the battery, slide the hard case  
into the front of the calculator.  
2. On the back of the calculator, remove the screw and the  
battery cover.  
3. Remove the old battery.  
4. After wiping a new battery with a dry cloth, load it into the  
battery compartment with its plus  
you can see it).  
side facing upwards (so  
k
5. Replace the battery cover and secure it in place with the  
screw.  
6. Initialize the calculator by pressing  
(CLR)  
!j  
(All)  
.
d
w
Be sure to perform this step! Do not skip it!  
Auto Power Off  
A
Your calculator will turn off automatically if you do not perform any operation for about 10  
minutes. If this happens, press the  
key to turn the calculator back on.  
p
Specifications  
Power Requirements:  
Solar Cell: Built into front of calculator (fixed)  
Button Battery: G13 type (LR44) × 1  
Approximate Battery Life:  
3 years (based on 1 hour of operation per day)  
Operating Temperature: 0˚C to 40˚C (32˚F to 104˚F)  
Dimensions: 12.2 (H) × 80 (W) × 161 (D) mm  
1/2" (H) × 31/8" (W) × 65/16" (D)  
Approximate Weight: 105 g (3.7 oz) including the battery  
Bundled Accessories: Hard Case  
 
E-77  
CASIO Europe GmbH  
Bornbarch 10, 22848 Norderstedt,  
Germany  
This mark applies in EU countries only.  
 
CASIO COMPUTER CO., LTD.  
6-2, Hon-machi 1-chome  
Shibuya-ku, Tokyo 151-8543, Japan  
SA0603-A  
Printed in China  
 

Belshaw Brothers Fryer 724CG User Manual
Beyerdynamic Microphone MC 910 User Manual
Bionaire Electric Heater BCH3210 User Manual
Black Decker Toaster TRO31 User Manual
Bowers Wilkins Speaker ASW CDM User Manual
Brinkmann Gas Grill Series 6419 User Manual
Cabletron Systems Cell Phone 9A656 04 ATM Module User Manual
Cambridge Audio DVD Player DVD99 User Manual
Canon Camcorder 8063B002 User Manual
CarAlarmscom Stereo System 180 AV User Manual