Campbell Manufacturing Power Supply 109SS User Manual

Model 109SS  
Temperature Probe  
9/08  
C o p y r i g h t  
©
1 9 8 3 - 2 0 0 8  
C a m p b e l l S c i e n t i f i c , I n c .  
 
109SS Table of Contents  
PDF viewers note: These page numbers refer to the printed version of this document. Use  
the Adobe Acrobat® bookmarks tab for links to specific sections.  
1. General .........................................................................1  
1.1 Specifications............................................................................................2  
2. Accuracy.......................................................................3  
3. Installation and Wiring ................................................4  
3.1 Burial ........................................................................................................4  
3.2 Submersion ...............................................................................................4  
4. Wiring............................................................................4  
5. Programming ...............................................................4  
5.1 CRBasic....................................................................................................5  
5.1.1 CRBasic Examples..........................................................................5  
5.1.1.1 Sample Program for CR200 Series Datalogger.....................6  
5.1.1.2 Example 2. Sample Program for CR1000 Datalogger .........6  
5.1.1.3 Sample Program for CR5000 ................................................7  
5.2 Edlog.........................................................................................................7  
5.2.1 Example Edlog Program.................................................................7  
5.3 Electrical Noisy Environments.................................................................9  
5.4 Long Lead Lengths...................................................................................9  
6. Measurement Details.................................................10  
7. Maintenance and Calibration....................................11  
8. Troubleshooting ........................................................11  
Figures  
1-1. 109SS Temperature Probe.......................................................................1  
2-1. Steinhart and Hart....................................................................................3  
2-2. Possible Errors.........................................................................................3  
6-1. 109SS Thermistor Probe Schematic......................................................10  
Tables  
4-1. Connections to Campbell Scientific Dataloggers....................................4  
5-1. Wiring for Example Programs ................................................................5  
5-2. Wiring for Example Program..................................................................7  
i
 
 
Model 109SS Temperature Probe  
1. General  
The –L portion of this probe’s model number indicates the probe has a user-  
specified lead length. For readability purposes, the probe will be referred to as  
the 109SS throughout this document.  
The 109SS consists of a thermistor encased in a stainless-steel sheath. The  
rugged stainless-steel sheath protects the thermistor allowing the 109SS to be  
buried or submerged in harsh, corrosive environments. It also has a fast time  
response. This probe measures temperature from -40°C to +70°C. The  
thermistor can survive temperatures up to 100°C, but the overmolded joint and  
cable should not be exposed to temperatures greater than +70°C (see Figure  
1-1).  
Overmolded Joint  
Thermistor Encased in  
Stainless-Steel Sheath  
Santoprene-Jacketed Cable  
FIGURE 1-1. 109SS Temperature Probe  
The 109SS probe is typically used with the CR200-series, CR800, CR850,  
CR1000, and CR3000 dataloggers which have a special instruction for  
measuring it. The probe can also be measured with other Campbell Scientific  
dataloggers using generic measurement instructions.  
The 109SS ships with:  
(1) Resource CD  
1
 
Model 109SS Temperature Probe  
1.1 Specifications  
Temperature Range: -40° to +70°C  
Survival Range: -50° to +100°C (thermistor); -50°C to +70°C (overmolded  
joint and cable)  
Thermistor Interchangeability Tolerance:  
Temperature  
-40°C  
0°C  
Tolerance  
±0.6°C  
±0.38°C  
±0.1°C  
25°C  
50°C  
±0.3°C  
70°C  
±0.45°C  
Time Constant:  
Fluid  
τ
Still Air  
Air @ 3 meter/second  
31 seconds  
7.5 seconds  
Antifreeze/Water Rolling 0.5 seconds  
Water submersion depth: 50 feet (21 psi)  
Linearization Error: Steinhart & Hart equation; maximum error is 0.02°C  
at -40°C.  
Maximum Lead Length: 1000 ft  
Other Information:  
Thermistor: BetaTherm - Micro-BetaCHIP Probe 10K3MCD1 0.018"  
diameter, 10Kohms at 25 C  
Probe:  
stainless steel sheath 0.063 inch (0.16 cm) diameter, 2.3 inch (5.84 cm) length  
overmolded joint 0.40 inch (1.02 cm) diameter, 1.67 inch (4.24 cm) length  
Cable: Santoprene 0.220 inch diameter  
Cable/probe connection: "ATUM" heat shrink, "Macromelt" overmolded joint  
Weight: 0.2 lbs/10 1/2 ft cable  
The black outer jacket of the cable is Santoprene® rubber. This  
compound was chosen for its resistance to temperature extremes,  
moisture, and UV degradation. However, this jacket will  
support combustion in air. It is rated as slow burning when  
tested according to U.L. 94 H.B. and will pass FMVSS302.  
Local fire codes may preclude its use inside buildings.  
NOTE  
2
 
Model 109SS Temperature Probe  
2. Accuracy  
The overall probe accuracy is a combination of the thermistor's interchangeability  
specification and the accuracy of the bridge resistor. The Steinhart and Hart  
equation used to calculate temperature has a negligible error (Figure 2-1). In a  
"worst case" the errors add to an accuracy of 0.6°C over the range of -40° to 70°C  
and ±0.49°C over the range of -20°C to 70°C. The major error component is the  
interchangeability specification (tolerance) of the thermistor. The bridge resistor  
has a 0.1% tolerance with a 10 ppm temperature coefficient. Figure 2-2 shows the  
possible worst case probe and measurement errors.  
Steinhart & Hart - Tabulated values  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
-50  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
-0.005  
Temperature Degrees C  
FIGURE 2-1. Steinhart and Hart  
FIGURE 2-2. Possible Errors  
3
 
Model 109SS Temperature Probe  
3. Installation and Wiring  
3.1 Burial  
The 109SS is suitable for shallow burial only. It should be placed horizontally  
at the desired depth to avoid thermal conduction from the surface to the  
thermistor. Placement of the cable inside a rugged conduit may be advisable  
for long cable runs, especially in locations subject to digging, mowing, traffic,  
use of power tools, or lightning strikes.  
3.2 Submersion  
The 109SS can be submerged to 50 ft. Please note that the 109SS is not  
weighted. Therefore, the installer should either add a weighting system or  
secure the probe to a fixed or submerged object such as a piling.  
4. Wiring  
Connections to Campbell Scientific dataloggers are given in Table 4-1.  
Temperature is measured with one Single-Ended input channel and a Voltage  
Excitation channel. Multiple probes can be connected to the same excitation  
channel (the number of probes per excitation channel is physically limited by  
the number of lead wires that can be inserted into a single voltage excitation  
terminal, approximately six).  
TABLE 4-1. Connections to Campbell Scientific Dataloggers  
CR200  
CR800  
CR850  
CR3000  
CR1000  
CR5000  
21X  
CR7  
CR510  
CR500  
CR10(X)  
Color  
Description  
CR23X  
Black  
Excitation  
Switched  
Voltage  
Switched  
Voltage  
Switched  
Voltage  
Excitation  
Excitation  
Excitation  
Red  
Temperature  
Signal  
Single-Ended Single-Ended Single-Ended  
Input  
Input  
AG  
G
Input  
Purple  
Clear  
Signal Ground  
Shield  
5. Programming  
This section is for users who write their own datalogger  
programs. A datalogger program to measure this sensor can be  
generated using Campbell Scientific’s Short Cut Program  
Builder software. You do not need to read this section to use  
Short Cut.  
NOTE  
4
 
Model 109SS Temperature Probe  
The datalogger is programmed using either CRBasic or Edlog. Dataloggers  
that use CRBasic include our CR200-series, CR800, CR850, CR1000,  
CR3000, CR5000, and CR9000(X); see Section 5.1. Dataloggers that use  
Edlog include our CR10, CR10(X), CR23X, and CR7; refer to Section 5.2.  
CRBasic and Edlog are included in our LoggerNet, PC400, and RTDAQ  
software.  
If applicable, please read “Section 5.3—Electrical Noisy Environments” and  
“Section 5.4—Long Lead Lengths” prior to programming your datalogger.  
Measurement details are provided in Section 6.  
5.1 CRBasic  
In the CR200-series, CR800, CR850, CR1000, and CR3000 dataloggers,  
Instruction Therm109 is used to measure temperature. Therm109 provides  
excitation, makes a single ended voltage measurement, and calculates  
temperature.  
The Therm109 instruction has the following form:  
Therm109 (Dest, Repetitions, SE Chan, Ex Chan, Multiplier, Offset)  
A multiplier of 1.0 and an offset of 0.0 yields temperature in Celsius. For  
Fahrenheit, use a multiplier of 1.8 and an offset of 32. Sections 5.1.1.1 and  
5.1.1.2 provide example programs that use the Therm109 instruction.  
The CR5000 and CR9000(X) use the BrHalf instruction to read the 109SS’s  
resistance. The Steinhart-Hart equation is entered as an expression to convert  
the resistance to degrees Celsius (see Section 5.1.1.3).  
5.1.1 CRBasic Examples  
TABLE 5-1. Wiring for Example  
Programs  
CR200  
CR1000  
CR5000  
Color  
Black  
Red  
Description  
Excitation  
Signal  
EX1 or VX1  
SE1  
Purple  
Clear  
Signal Ground  
Shield  
5
 
Model 109SS Temperature Probe  
5.1.1.1 Sample Program for CR200 Series Datalogger  
'CR200 Series Datalogger  
‘This example program measures a single 109SS Thermistor Probe  
‘once a second and stores the average temperature every 10 minutes.  
‘Declare the variable for the temperature measurement  
Public Air_Temp  
‘Define a data table for 10 minute averages:  
DataTable (AvgTemp,1,1000)  
DataInterval (0,10,min)  
Average (1,Air_Temp,0)  
EndTable  
BeginProg  
Scan (1 ,sec)  
‘Measure the temperature:  
Therm109 (Air_Temp,1,1,Ex1,1.0,0)  
Call the data table:  
CallTable AvgTemp  
NextScan  
EndProg  
5.1.1.2 Example 2. Sample Program for CR1000 Datalogger  
'CR1000  
'Declare Variables and Units  
Public T109_C  
Units T109_C=Deg C  
'Define Data Tables  
DataTable(Table1,True,-1)  
DataInterval(0,10,Min,10)  
Average(1,T109_C,FP2,False)  
EndTable  
'Main Program  
BeginProg  
Scan(1,Sec,1,0)  
'Default Datalogger Battery Voltage measurement Batt_Volt:  
'109SS Temperature Probe measurement T109_C:  
Therm109(T109_C,1,1,1,0,_60Hz,1.0,0.0)  
'Call Data Tables and Store Data  
CallTable(Table1)  
NextScan  
EndProg  
6
 
Model 109SS Temperature Probe  
5.1.1.3 Sample Program for CR5000  
'CR5000  
'This example program measures a single 109 Thermistor probe  
'once a second and stores the average temperature every 10 minutes.  
'Declare the variable for the temperature.  
Public Air_Temp  
'Declare variables for the raw measurement, thermistor resistance, and ln(resistance):  
Dim V_Vx, Rtherm, lnRt  
'Define a data table for 10 minute averages:  
DataTable (AvgTemp,1,1000)  
DataInterval (0,10,min,10)  
Average (1,Air_Temp,IEEE4,0)  
EndTable  
BeginProg  
Scan (1 ,sec,5,0)  
'Measure the 109 probe. The result is V/Vx:  
BrHalf (V_Vx,1,mV5000,3,Vx1,1,5000,True ,0,_60Hz,1.0,0)  
'Calculate reistance:  
RTherm=24900*(1/V_Vx-1)  
'Calculate the natural log of the resistance:  
lnRt=Log(Rtherm)  
'Apply the Steinhart and Hart equation and convert to degrees C in one step:  
Air_Temp=1/(1.129241e-3+2.341077e-4*lnRt+8.775468e-8*(lnRt^3))-273.15  
'Call the data table:  
CallTable AvgTemp  
NextScan  
EndProg  
5.2 Edlog  
In Edlog, Instruction 5 is typically used to measure the 109SS resistance.  
Instruction 55 is used to apply the Steinhart and Hart equation. Instruction 55  
does not allow entering the coefficients with scientific notation. In order to use  
this instruction with as much resolution as possible, the ln resistance term is  
pre scaled by 10-3. This allows the first order coefficient (B) to be multiplied  
by 103, and the 3rd order coefficient (C) to be multiplied by 109 (see Section  
5.2.1).  
5.2.1 Example Edlog Program  
TABLE 5-2. Wiring for Example Program  
Color  
Black  
Red  
Purple  
Clear  
Description  
Excitation  
Signal  
Signal Ground  
Shield  
CR10X  
E1  
SE1  
AG  
G
7
 
Model 109SS Temperature Probe  
Example Program for CR10X  
;{CR10X}  
;
*Table 1 Program  
01: 1  
Execution Interval (seconds)  
1: AC Half Bridge (P5)  
1:  
1
Reps  
2: 25  
2500 mV 60 Hz Rejection Range  
SE Channel  
Excite all reps w/Exchan 1  
mV Excitation  
3:  
4:  
1
1
5: 2500  
6:  
1
Loc [ V_Vx  
Mult  
]
7: 1.0  
8: 0.0  
Offset  
2: Z=1/X (P42)  
1:  
2:  
1
2
X Loc [ V_Vx  
Z Loc [ Vx_V  
]
]
3: Z=X+F (P34)  
1:  
2: -1  
3:  
2
X Loc [ Vx_V  
F
Z Loc [ Vx_V_1  
]
3
]
4: Z=X*F (P37)  
1:  
2: 24900  
3:  
3
X Loc [ Vx_V_1  
F
Z Loc [ Rtherm  
]
4
]
]
5: Z=LN(X) (P40)  
1:  
2:  
4
5
X Loc [ Rtherm  
Z Loc [ lnRt  
]
6: Z=X*F (P37)  
1:  
2: .001  
3:  
5
X Loc [ lnRt  
F
Z Loc [ Scal_lnRt ]  
]
6
7: Polynomial (P55)  
1:  
2:  
3:  
1
6
7
Reps  
X Loc [ Scal_lnRt ]  
F(X) Loc [ 1_Tk  
]
4: .001129  
5: .234108  
6: 0.0  
7: 87.7547  
8: 0.0  
C0  
C1  
C2  
C3  
C4  
C5  
9: 0.0  
8: Z=1/X (P42)  
1:  
2:  
7
8
X Loc [ 1_Tk  
Z Loc [ Tk  
]
]
8
 
Model 109SS Temperature Probe  
9: Z=X+F (P34)  
1:  
2: -273.15  
3:  
8
X Loc [ Tk  
F
Z Loc [ Air_Temp ]  
]
9
10: If time is (P92)  
1:  
2: 10  
3: 10  
0
Minutes (Seconds --) into a  
Interval (same units as above)  
Set Output Flag High (Flag 0)  
11: Real Time (P77)  
1: 110  
Day,Hour/Minute (midnight = 0000)  
12: Average (P71)  
1:  
2:  
1
9
Reps  
Loc [ Air_Temp ]  
*Table 2 Program  
02: 0.0000  
Execution Interval (seconds)  
*Table 3 Subroutines  
End Program  
5.3 Electrical Noisy Environments  
AC power lines, pumps, and motors, can be the source of electrical noise. If  
the 109SS probe or datalogger is located in an electrically noisy environment,  
the 109SS probe should be measured with the 60 or 50 Hz rejection option as  
shown in the examples in Section 5.1.1.2 and Section 5.2.1.  
5.4 Long Lead Lengths  
Additional settling time may be required for lead lengths longer than 300 feet,  
where settling time is the delay before the measurement is made.  
For the CR200-series, CR800, CR850, CR1000, and CR3000, the 60 and 50  
Hz integration options include a 3 ms settling time; longer settling times can be  
entered into the Settling Time parameter. The example Therm109 instruction  
listed below has a 20 mSec (20000 μSec) delay:  
‘Therm109 ( Dest, Reps, SEChan, ExChan, SettlingTime, Integ, Mult, Offset )  
Therm109(T109_C,1,1,1,20000,_60Hz,1.0,0.0)  
In Edlog, use the DC Half Bridge instruction (P4) with a 20 millisecond delay  
as shown below. Use P4 in place of P5 in Section 5.2.1 (the instructions that  
follow P5 to convert the measurement result to temperature are still required).  
9
 
Model 109SS Temperature Probe  
1: Excite-Delay (SE) (P4)  
1:  
1
Reps  
2: 25  
2500 mV 60 Hz Rejection Range (Delay must be zero)  
3:  
4:  
5:  
1
1
2
SE Channel  
Excite all reps w/Exchan 1  
Delay (0.01 sec units)  
mV Excitation  
Loc [V_Vx ]  
Multiplier  
6: 2500  
7:  
8: .0004  
9: 0.0  
3
Offset  
6. Measurement Details  
Understanding the details in this section are not necessary for general  
operation of the 109SS Probe with CSI's dataloggers.  
The Therm109 Instruction outputs a 2500 mV excitation and measures the  
voltage across the 24.9 K resistor (Figure 6-1). The thermistor resistance  
changes with temperature.  
BLACK  
RED  
EX  
HI  
10K3AI  
THERMISTOR  
24.9K Ω, 0.1%  
PURPLE  
CLEAR  
AG  
G
FIGURE 6-1. 109SS Thermistor Probe Schematic  
The measured voltage, V, is:  
24,900  
V = VEX  
24,900 + Rt  
Where VEX is the excitation voltage, 24,900 ohms is the resistance of the fixed  
resistor and Rt is the resistance of the thermistor  
10  
 
Model 109SS Temperature Probe  
The resistance of the thermistor is:  
V
EX  
R = 24,900  
1  
t
V
The Steinhart and Hart equation is used to calculate temperature from  
Resistance:  
1
TK =  
A + Bln(RT ) + C(ln(RT ))3  
Where TK is the temperature in Kelvin. The Steinhart and Hart coefficients  
used in the Therm109 instruction are:  
A = 1.129241x10-3  
B = 2.341077x10-4  
C = 8.775468x10-8  
7. Maintenance and Calibration  
The 109SS Probe requires minimal maintenance. Periodically check cabling  
for proper connections, signs of damage, and possible moisture intrusion. For  
all factory repairs and recalibrations, customers must get a returned materials  
authorization (RMA). Customers must also properly fill out a “Declaration of  
Hazardous Material and Decontamination” form, and comply with the  
requirements specified in it. Refer to the “Warranty and Assistance” page for  
more information.  
8. Troubleshooting  
Symptom: Temperature is NAN, -INF, -9999, -273  
Verify the red wire is connected to the correct Single-Ended analog input  
channel as specified by the measurement instruction, the black wire is  
connected to the switched excitation channel as specified by the measurement  
instruction, and the purple wire is connected to datalogger ground.  
Symptom: Incorrect Temperature  
Verify the multiplier and offset parameters are correct for the desired units  
(Section 5). Check the cable for signs of damage and possible moisture  
intrusion.  
For all factory repairs, customers must get an RMA. Customers  
must also properly fill out a “Declaration of Hazardous Material  
and Decontamination” form and comply with the requirements  
specified in it. Refer to the “Warranty and Assistance” page for  
more information.  
NOTE  
11  
 
Model 109SS Temperature Probe  
Symptom: Unstable Temperature  
Try using the 60 or 50 Hz integration options, and/or increasing the settling  
time as described in Sections 8 and 9. Make sure the clear shield wire is  
connected to datalogger ground, and the datalogger is properly grounded.  
12  
 
This is a blank page.  
 
Campbell Scientific Companies  
Campbell Scientific, Inc. (CSI)  
815 West 1800 North  
Logan, Utah 84321  
UNITED STATES  
Campbell Scientific Africa Pty. Ltd. (CSAf)  
PO Box 2450  
Somerset West 7129  
SOUTH AFRICA  
Campbell Scientific Australia Pty. Ltd. (CSA)  
PO Box 444  
Thuringowa Central  
QLD 4812 AUSTRALIA  
Campbell Scientific do Brazil Ltda. (CSB)  
Rua Luisa Crapsi Orsi, 15 Butantã  
CEP: 005543-000 São Paulo SP BRAZIL  
Campbell Scientific Canada Corp. (CSC)  
11564 - 149th Street NW  
Edmonton, Alberta T5M 1W7  
CANADA  
Campbell Scientific Ltd. (CSL)  
Campbell Park  
80 Hathern Road  
Shepshed, Loughborough LE12 9GX  
UNITED KINGDOM  
Campbell Scientific Ltd. (France)  
Miniparc du Verger - Bat. H  
1, rue de Terre Neuve - Les Ulis  
91967 COURTABOEUF CEDEX  
FRANCE  
Campbell Scientific Spain, S. L.  
Psg. Font 14, local 8  
08013 Barcelona  
SPAIN  
 

BenQ CRT Television SP920 User Manual
Black Box Computer Hardware HDMCII VDSL2 LAN Extender Module Extended Temp User Manual
Black Decker Toaster TRO31 User Manual
Bosch Appliances Security Camera EX27 User Manual
Cadillac Automobile CRC 2nd Edition User Manual
Califone CD Player 2455AV 02 User Manual
Califone Microphone PADM 515 User Manual
Canon Photo Scanner N1220U User Manual
C Crane PDAs Smartphones A 66 User Manual
Chief Manufacturing TV Mount CM8 User Manual