Philips Stereo Amplifier TDA8559T User Manual

TDA8559T  
Low-voltage stereo headphone amplifier  
Rev. 03 — 15 May 2006  
Product data sheets  
1. General description  
The TDA8559T is a stereo amplifier that operates over a wide supply voltage range from  
1.9 V to 30 V and consumes a very low quiescent current. This makes it suitable for  
battery fed applications (2 × 1.5 V cells). Because of an internal voltage buffer, this device  
can be used with or without a capacitor connected in series with the load. It can be  
applied as a headphone amplifier, but also as a mono amplifier with a small speaker  
(25 ), or as a line driver in mains applications.  
2. Features  
I Operating voltage from 1.9 V to 30 V  
I Very low quiescent current  
I Low distortion  
I Few external components  
I Differential inputs  
I Usable as a mono amplifier in Bridge-Tied Load (BTL) or stereo Single-Ended (SE)  
I Single-ended mode without loudspeaker capacitor  
I Mute and Standby mode  
I Short-circuit proof to ground, to supply voltage (< 10 V) and across load  
I No switch on or switch off clicks  
I ESD protected on all pins  
3. Applications  
I Portable telephones  
I MP3 players  
I Portable audio  
I Mains fed equipment  
 
     
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
6. Block diagram  
V
P2  
V
P1  
15  
16  
1
REFERENCE  
STANDBY  
V
P
2
3
50 k  
+
+IN1  
V/I  
14  
IN1  
OA  
OUT1  
+
50 kΩ  
50 kΩ  
7
8
DQC  
MUTE  
MODE  
INPUT  
LOGIC  
+
5
6
11  
+
+IN2  
OUT2  
OA  
V/I  
IN2  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
12  
4
BUFFER  
BUFFER  
SVRR  
100  
kΩ  
TDA8559T  
9,10  
13  
mgd115  
n.c.  
GND  
Fig 1. Block diagram  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
3 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
7. Pinning information  
7.1 Pinning  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
STANDBY  
+IN1  
V
V
P1  
P2  
IN1  
OUT1  
GND  
SVRR  
+IN2  
TDA8559T  
BUFFER  
OUT2  
n.c.  
IN2  
MUTE  
MODE  
n.c.  
001aae802  
Top view  
Fig 2. Pin configuration  
7.2 Pin description  
Table 3.  
Symbol  
STANDBY  
+IN1  
Pin description  
Pin  
1
Description  
standby select  
2
non-inverting input 1  
inverting input 1  
IN1  
3
SVRR  
+IN2  
4
supply voltage ripple rejection  
non-inverting input 2  
inverting input 2  
mute select  
5
IN2  
6
MUTE  
MODE  
n.c.  
7
8
input mode select  
not connected  
9
n.c.  
10  
11  
12  
13  
14  
15  
16  
not connected  
OUT2  
BUFFER  
GND  
output 2  
buffer output (0.5VP)  
ground  
OUT1  
VP2  
output 1  
high supply voltage  
low supply voltage  
VP1  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
4 of 36  
 
     
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
8. Functional description  
The TDA8559T contains two amplifiers with differential inputs, a 0.5VP output buffer and a  
high supply voltage stabilizer. Each amplifier consists of a voltage-to-current converter  
(V/I), an output amplifier and a common dynamic quiescent current controller. The gain of  
each amplifier is internally fixed at 26 dB (= 20 ×). The 0.5VP output can be used as a  
replacement for the single-ended capacitors. The two amplifiers can also be used as a  
mono amplifier in a BTL configuration thereby resulting in more output power.  
With three mode select pins, the device can be switched into the following modes:  
1. Standby mode (IP < 10 µA)  
2. Mute mode  
3. Operation mode, with two input selections (the input source is directly connected or  
connected via coupling capacitors at the input).  
The ripple rejection in the stereo application with a single-ended capacitor can be  
improved by connecting a capacitor between the 0.5VP capacitor pin and ground.  
The device is fully protected against short-circuiting of the output pins to ground, to the  
low supply voltage pin and across the load.  
8.1 V/I converters  
The V/I converters have a transconductance of 400 µS. The inputs are completely  
symmetrical and the two amplifiers can be used in opposite phase. The Mute mode  
causes the V/I converters to block the input signal. The input mode pin selects two  
applications in which the V/I converters can be used.  
The first application (input mode pin floating) is used with a supply voltage below 6 V. The  
input DC level is at ground level (the unused input pin connected to ground) and no input  
coupling capacitors are necessary. The maximum converter output current is sufficient to  
obtain an output swing of 3 V (peak).  
In the second application with a supply voltage greater than 6 V (input mode pin HIGH),  
the input mode pin is connected to VP. In this configuration (input DC level is  
0.5VP + 0.6 V) the input source must be coupled with a capacitor and the two unused  
input pins must be connected via a capacitor to ground, to improve noise performance.  
This application has a higher quiescent current, because the maximum output current of  
the V/I converter is higher to obtain an output voltage swing of 9 V (peak).  
8.2 Output amplifiers  
The output amplifiers have a transresistance of 50 k, a bandwidth of approximately  
750 kHz and a maximum output current of 100 mA. The mid-tap output voltage equals the  
voltage applied at the non-inverting pin of the output amplifier. This pin is connected to the  
output of the 0.5VP buffer. This reduces the distortion when the load is connected  
between an output amplifier and the buffer (because feedback is applied over the load).  
8.3 Buffer  
The buffer delivers 0.5VP to the output with a maximum output (sink and source) current of  
200 mA (peak).  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
5 of 36  
 
       
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
8.4 Dynamic quiescent controller  
The Dynamic Quiescent Current controller (DQC) gives the advantage of low quiescent  
current and low distortion. When there are high frequencies in the output signal, the DQC  
will increase the quiescent current of the two output amplifiers and the buffer. This will  
reduce the crossover distortion that normally occurs at high frequencies and low  
quiescent current. The DQC gives output currents that are linear with the amplitude and  
the frequency of the output signals. These currents control the quiescent current.  
8.5 Stabilizer  
The TDA8559T has a voltage supply range from 1.9 V to 30 V. This range is divided over  
two supply voltage pins. Pin 16 is 1.9 V to 18 V (breakdown voltage of the process); this  
pin is preferred for supply voltages less than 18 V. Pin 15 is used for applications where  
VP is approximately 6 V to 30 V. The stabilizer output is internally connected to the supply  
voltage pin 16. In the range from 6 V to 18 V, the voltage drop to pin 16 is 1 V. In the range  
from 18 V to 30 V the stabilizer output voltage (to pin 16) is approximately 17 V.  
8.6 Input logic  
The MUTE pin (pin 7) selects the Mute mode of the V/I converters. LOW (TTL/CMOS)  
level is mute. A voltage between 0.5 V (low level) and 1.5 V (high level) causes a soft mute  
to operate (no plops). When pin 7 is floating or greater than 1.5 V it is in the operating  
condition.  
The input mode pin must be connected to VP when the supply voltage is greater than 6 V.  
The input mode logic raises the tail current of the V/I converters and enables the two  
buffers to bias the inputs of the V/I converters.  
8.7 Reference  
This circuit supplies all currents needed in this device. With the Standby mode pin 1  
(TTL/CMOS), it is possible to switch to the Standby mode and reduce the total quiescent  
current to below 10 µA.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
6 of 36  
 
       
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
9. Internal circuitry  
Table 4.  
Symbol  
STANDBY  
Internal circuits  
Pin  
Equivalent circuit  
1
V
P1  
10 k  
12  
kΩ  
mgd110  
+IN1, IN1, +IN2 2, 3, 5 and 6  
and IN2  
V
P1  
mgd106  
SVRR  
4
V
P1  
50  
kΩ  
50  
kΩ  
50  
kΩ  
50  
kΩ  
mgd107  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
7 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
Table 4.  
Symbol  
MUTE  
Internal circuits …continued  
Pin  
Equivalent circuit  
7
V
P1  
mgd112  
MODE  
8
V
P1  
250  
kΩ  
1 kΩ  
5 kΩ  
mgd113  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
8 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
Table 4.  
Symbol  
Internal circuits …continued  
Pin  
Equivalent circuit  
OUT2 and OUT1 11 and 14  
V
P1  
100 Ω  
50 Ω  
mgd108  
buffer output  
BUFFER  
12  
V
P1  
buffer output  
mgd109  
VP2 and VP1  
15 and 16  
V
V
P1  
P2  
2 kΩ  
mgd111  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
9 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
10. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VP2(max)  
VP1(max)  
Vi(max)  
IORM  
Parameter  
Conditions  
Min  
Max  
30  
Unit  
V
maximum supply voltage (pin 15)  
maximum supply voltage (pin 16)  
maximum input voltage  
peak output current  
-
-
18  
V
-
18  
V
repetitive  
-
150  
1.19  
+85  
+150  
150  
1
mA  
W
°C  
°C  
°C  
h
Ptot  
total power dissipation  
ambient temperature  
-
Tamb  
Tstg  
40  
storage temperature  
55  
Tvj  
virtual junction temperature  
short-circuiting time  
-
-
tsc  
VP < 10 V  
11. Thermal characteristics  
Table 6.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
105  
Unit  
K/W  
thermal resistance from junction to ambient  
in free air  
12. Characteristics  
Table 7.  
Characteristics  
VP = 3 V; Tamb = 25 °C; fi = 1 kHz; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DC characteristics  
VP  
operating supply voltage  
1.9  
-
3
30  
4
V
Iq(tot)  
Istb  
V1  
total quiescent current  
standby supply current  
Standby mode voltage  
open load  
open load  
standby  
operating  
mute  
2.75  
mA  
µA  
V
-
-
10  
0.5  
18  
0.5  
18  
300  
0
-
1.5  
0
-
V
V7  
Mute mode voltage  
input bias current  
-
V
operating  
1.5  
-
-
V
Ibias  
100  
nA  
Single-ended stereo application (RL = 32 )  
Po  
output power  
THD = 10 %  
30  
-
35  
-
mW  
%
THD  
total harmonic distortion  
Po = 20 mW; fi = 1 kHz  
0.075  
0.1  
0.15  
Po = 20 mW; fi = 10 kHz  
-
-
%
Gv  
fss  
voltage gain  
25  
-
26  
27  
-
dB  
kHz  
small signal roll-off  
frequency  
1 dB  
750  
αcs  
channel separation  
channel unbalance  
Rs = 5 kΩ  
40  
-
-
-
-
dB  
dB  
Gv  
1
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
10 of 36  
 
     
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
Table 7.  
Characteristics …continued  
VP = 3 V; Tamb = 25 °C; fi = 1 kHz; unless otherwise specified.  
Symbol  
Vno  
Parameter  
Conditions  
Min  
Typ  
70  
Max  
85  
Unit  
µV  
noise output voltage  
-
-
Vno(mute)  
noise output voltage in  
mute  
20  
30  
µV  
Vo(mute)  
Vmt  
output voltage in mute  
mid-tap voltage  
-
-
30  
µV  
V
1.4  
75  
-
1.5  
100  
-
1.6  
125  
100  
-
Zi  
input impedance  
kΩ  
mV  
dB  
Vos  
DC output offset voltage  
SVRR  
supply voltage ripple  
rejection  
45  
55  
BTL application (RL = 25 )  
Po  
output power  
THD = 10 %  
125  
140  
0.05  
0.1  
-
mW  
%
THD  
total harmonic distortion  
Po = 70 mW; fi = 1 kHz  
Po = 70 mW; fi = 10 kHz  
-
0.1  
-
-
%
Gv  
fss  
voltage gain  
31  
-
32  
33  
-
dB  
kHz  
small signal roll-off  
frequency  
1 dB  
750  
Vno  
noise output voltage  
-
-
100  
25  
120  
40  
µV  
Vno(mute)  
noise output voltage in  
mute  
µV  
Vo(mute)  
Zi  
output voltage in mute  
input impedance  
-
-
40  
61  
150  
-
µV  
kΩ  
mV  
dB  
39  
-
50  
-
Vos  
DC output offset voltage  
SVRR  
supply voltage ripple  
rejection  
39  
49  
Line driver application (RL = 1 k)  
Vo line output voltage  
0.1  
-
2.9  
V
[1] The supply voltage range at pin VP1 is from 1.9 V to 18 V. Pin VP2 is used for the voltage range from 6 V to 30 V.  
[2] Measured with low-pass filter 30 kHz.  
[3] Noise output voltage measured with a bandwidth of 20 Hz to 20 kHz, unweighted. Rs = 5 k.  
[4] RMS output voltage in mute is measured with Vi = 200 mV (RMS); f = 1 kHz.  
[5] DC output offset voltage is measured between the signal output and the 0.5VP output.  
[6] The ripple rejection is measured with a ripple voltage of 200 mV (RMS) applied to the positive supply rail (Rs = 0 k).  
[7] DC output offset voltage is measured between the two signal outputs.  
13. Application information  
13.1 General  
For applications with a maximum supply voltage of 6 V (input mode low) the input pins  
need a DC path to ground (see Figure 3 and Figure 4). For applications with supply  
voltages in the range from 6 V to 18 V (input mode HIGH) the input DC level is  
0.5VP + 0.6 V. In this situation the input configurations illustrated in Figure 5 and Figure 6  
have to be used.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
11 of 36  
 
                 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
The capacitor Cb is recommended for stability improvement. The value may vary between  
10 nF and 100 nF. This capacitor should be placed close to the IC between pin 12 and  
pin 13.  
13.2 Heatsink design  
The standard application is stereo headphone single-ended with a 32 load impedance  
to buffer (see Figure 9). The headphone amplifier can deliver a peak output current of  
150 mA into the load.  
For the SO16 envelope Rth(j-a) = 105 K/W; the maximum sinewave power dissipation for  
150 25  
105  
T
amb = 25 °C is: 1.2 W =  
--------------------  
150 60  
--------------------  
105  
For Tamb = 60 °C the maximum total power dissipation is: 0.85 W =  
13.3 Test conditions  
Tamb = 25 °C; unless otherwise specified: VP = 3 V, f = 1 kHz, RL = 32 , Gain = 26 dB,  
low input mode, band-pass filter: 22 Hz to 30 kHz. The total harmonic distortion as a  
function of frequency was measured with low-pass filter of 80 kHz. The quiescent current  
has been measured without any load impedance.  
In applications with coupling capacitors towards the load, an electrolytic capacitor has to  
be connected to pin 4 (SVRR).  
1. The graphs for the single-ended application have been measured with the application  
illustrated in Figure 9; input configuration for input mode low (Figure 4) and input  
configuration for input mode high (Figure 6).  
2. The graphs for the BTL application ‘input mode low’ have been measured with the  
application circuit illustrated in Figure 11 and the input configuration illustrated in  
3. The graphs for the line-driver application have been measured with the application  
circuit illustrated in Figure 13 and the input configuration illustrated in Figure 6; input  
mode high.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
12 of 36  
 
   
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
13.4 Input configurations  
The IC can be applied in two ways, ‘input mode low’ and ‘input mode high’. This can be  
selected by the input mode at pin 8:  
1. Input mode low: pin 8 floating: The DC level of the input pins has to be between 0 V  
and (VP 1.8 V). A DC path to ground is needed. The maximum output voltage is  
approximately 2.1 V (RMS). Input configurations illustrated in Figure 3 and Figure 4  
should be used.  
2. Input mode high: pin 8 is connected to VP: This mode is intended for supply voltages  
> 6 V. It can deliver a maximum output voltage of approximately 6 V (RMS) at  
THD = 0.5 %. The DC voltage level of the input pins is (0.5VP + 0.6 V). Coupling  
capacitors are necessary. Input configurations illustrated in Figure 5 and Figure 6  
should be used.  
2.2 µF  
pins 2 and 5  
INPUT  
pins 2 and 5  
INPUT  
5 kΩ  
V
V
IN  
IN  
pins 3 and 6  
mgd123  
pins 3 and 6  
mgd124  
VP < 6 V.  
VP < 6 V.  
Fig 3. Input configuration; with input capacitor  
Fig 4. Input configuration; without input capacitor  
pin 2  
100 nF  
V
V
IN  
IN  
pin 3  
220 nF  
220  
nF  
pins 2 and 5  
pin 6  
INPUT  
V
IN  
220 nF  
100 nF  
pins 3 and 6  
mgd125  
pin 5  
mgd126  
VP < 6 V.  
At VP < 6 V, combined negative inputs.  
Fig 5. Input configuration  
Fig 6. Input configuration  
V
P
620 kΩ  
7
47 kΩ  
220 nF  
mute  
mgl135  
Fig 7. Soft mute  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
13 of 36  
 
         
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
13.5 Standby/mute  
1. The Standby mode (V1 < 0.5 V) is intended for power saving purpose. Then the total  
quiescent current is < 10 µA.  
2. To avoid ‘pop-noise’ during switch-on or switch-off the IC can be muted (V7 < 0.5 V).  
This can be achieved by a ‘soft-mute’ circuit or by direct control from a microcontroller.  
13.6 Application 1: SE with loudspeaker capacitor  
The value of capacitor Cr influences the behavior of the Supply Voltage Ripple Rejection  
(SVRR) at low frequencies; increasing the value of Cr increases the performance of the  
SVRR; see Figure 8.  
13.7 Application 2: SE to buffer (without loudspeaker capacitor)  
This is the basic headphone application. The advantage of this application with respect to  
application 1, is that it needs only one external component (Cb) in the event of stability  
problems; see Figure 9.  
13.8 Application 3: Improved SE to buffer (without loudspeaker capacitor)  
This application is an improved configuration of application 2. The distinction between the  
two is connecting the loads in opposite phase. This lowers the average current through  
the SE buffer. It should be noted that a headphone cannot be used because the load  
requires floating terminals; see Figure 10.  
13.9 Application 4: Bridge tied load mono amplifier  
This configuration delivers four times the output power of the SE application with the same  
supply and load conditions. The capacitor Cr is not required; see Figure 11.  
13.10 Application 5: Line driver application  
The TDA8559T delivers a virtual rail-to-rail output voltage and is also usable in a low  
voltage environment, as a line driver. In this application the input needs a DC path to  
ground, input configurations illustrated in Figure 3 and Figure 4 should be used. The value  
of capacitor Cr influences the behavior of the SVRR at low frequencies; increasing the  
value of Cr increases the performance of the SVRR; see Figure 12.  
13.11 Application 6: Line driver application  
The TDA8559T delivers a virtual rail-to-rail output voltage. Because the input mode has to  
be high, the input configurations illustrated in Figure 5 and Figure 6 should be used. This  
application can also be used for headphone application, however, due to the limited output  
current and the limited output power at the headphone, series resistors have to be used  
between the output pins and the load; see Figure 13.  
The value of capacitor Cr influences the behavior of the SVRR at low frequencies;  
increasing the value of Cr increases the performance of the SVRR.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
14 of 36  
 
             
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
13.12 Application 7: Line driver application  
With the supply voltage connected to pin 15 it is possible to use the head amplifier above  
the maximum of 18 V to pin 16. The internal supply voltage will be reduced to a maximum  
of approximately 17 V.  
This will be convenient in applications where the supply voltage is higher than 18 V,  
however an output voltage swing that reaches the higher supply voltage is not required.  
the input configurations illustrated in Figure 5 and Figure 6 should be used. This  
application can also be used for headphone applications. However, due to the limited  
output current, series resistors have to be used between the output pins and the load; see  
13.13 Application diagrams  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
IN1  
1
REFERENCE  
V
P
2
3
50 kΩ  
+
+
V/I  
+
OUT1  
14  
OA  
220 µF  
32 Ω  
50 kΩ  
50 kΩ  
MUTE  
MODE  
7
8
DQC  
INPUT  
LOGIC  
32 Ω  
+
OUT2  
11  
5
6
+
OA  
+
IN2  
V/I  
220 µF  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
SVRR  
4
BUFFER  
100  
kΩ  
22 µF  
Cr  
TDA8559T  
Cb  
13  
mgd116  
GND  
Fig 8. Application 1; single-ended with loudspeaker capacitor  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
15 of 36  
 
     
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
+V  
P
V
V
P2  
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
1
REFERENCE  
V
P
2
3
50 kΩ  
+
+
V/I  
IN1  
+
OUT1  
14  
OA  
32 Ω  
50 kΩ  
50 kΩ  
MUTE  
MODE  
7
8
DQC  
INPUT  
LOGIC  
32 Ω  
+
OUT2  
11  
5
6
+
OA  
+
V/I  
IN2  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
BUFFER  
SVRR  
100  
kΩ  
TDA8559T  
Cb  
13  
mgd117  
GND  
Fig 9. Application 2; single-ended to buffer (without loudspeaker capacitor)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
16 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
+V  
P
V
V
P2  
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
1
REFERENCE  
V
P
2
3
50 kΩ  
+
32 Ω  
+
V/I  
IN1  
OUT1  
14  
OA  
+
50 kΩ  
50 kΩ  
MUTE  
MODE  
7
8
DQC  
INPUT  
LOGIC  
32 Ω  
+
OUT2  
11  
5
6
+
OA  
+
IN2  
V/I  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
BUFFER  
SVRR  
100  
kΩ  
TDA8559T  
Cb  
13  
mgd118  
GND  
Fig 10. Application 3; improved single-ended to buffer (without loudspeaker capacitor)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
17 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
+V  
P
V
V
P2  
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
IN1  
1
REFERENCE  
V
P
2
3
50 kΩ  
+
+
V/I  
OUT1  
14  
OA  
50 kΩ  
50 kΩ  
MUTE  
MODE  
7
8
25 Ω  
DQC  
INPUT  
LOGIC  
+
OUT2  
11  
5
6
+
OA  
IN2  
V/I  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
BUFFER  
SVRR  
100  
kΩ  
TDA8559T  
Cb  
13  
mgd119  
GND  
Fig 11. Application 4; BTL mono amplifier  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
18 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
+V  
P
V
V
P2  
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
IN1  
1
REFERENCE  
V
P
2
3
50 kΩ  
+
1 kΩ  
+
V/I  
OUT1  
14  
OA  
10 µF  
50 kΩ  
50 kΩ  
MUTE  
MODE  
7
8
DQC  
INPUT  
LOGIC  
+
OUT2  
11  
5
6
+
OA  
IN2  
V/I  
10 µF  
1 kΩ  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
SVRR  
4
BUFFER  
100  
kΩ  
22 µF  
Cr  
TDA8559T  
Cb  
13  
mgd120  
GND  
VP = 1.9 V to 6 V.  
Fig 12. Application 5; line driver application  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
19 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
1
REFERENCE  
V
P
100 nF  
IN1  
2
3
50 kΩ  
+
1 kΩ  
+
V/I  
OUT1  
14  
OA  
10 µF  
50 kΩ  
50 kΩ  
7
8
DQC  
220  
nF  
INPUT  
LOGIC  
MUTE  
MODE  
100 nF  
IN2  
+
OUT2  
11  
5
6
+
OA  
V/I  
10 µF  
1 kΩ  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
SVRR  
4
BUFFER  
100  
kΩ  
22 µF  
Cr  
TDA8559T  
Cb  
13  
mgd121  
GND  
VP = 6 V to 18 V.  
Fig 13. Application 6; line driver application  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
20 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
+V  
P
V
P2  
V
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
1
REFERENCE  
V
P
100 nF  
IN1  
2
3
50 kΩ  
+
+
V/I  
OUT1  
14  
+
OA  
10 µF  
50 kΩ  
50 kΩ  
7
8
DQC  
220  
nF  
POWER  
AMPLIFIER  
INPUT  
LOGIC  
MUTE  
MODE  
100 nF  
+
OUT2  
11  
5
6
+
+
OA  
IN2  
V/I  
10 µF  
50 kΩ  
50  
50  
kΩ  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
SVRR  
BUFFER  
100  
kΩ  
TDA8559T  
Cb  
13  
mgd122  
GND  
VP = 6 V to 30 V.  
Fig 14. Application 7; line driver application  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
21 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
13.14 Printed-circuit board layout  
MUTE  
Inp.  
mode  
220 nF  
Out2  
220 µF  
INP2  
8
9
22 µF  
Buf.  
INP1  
1
220 µF  
Out1  
100 nF  
220 nF  
Std.  
by  
TDA8559T  
100 µF  
D&A AUDIO POWER  
QC - NIJMEGEN  
HR  
+Vp  
001aae801  
Top view component side.  
Fig 15. Printed-circuit board layout  
The Printed-Circuit Board (PCB) layout supports all applications as illustrated in Figure 8  
to Figure 14. The PCB layout has been assembled for input configuration as shown in  
Figure 3, and output and supply configuration as shown in Figure 8 for a maximum supply  
voltage of 6 V.  
13.15 Response curves for low input mode  
mda089  
mda090  
10  
q
20  
I
V
P1  
(mA)  
(V)  
8
16  
12  
6
4
(1)  
(2)  
8
4
0
2
0
0
4
8
12  
16  
20  
0
10  
20  
30  
V
P2  
(V)  
V
(V)  
P
(1) High mode.  
(2) Low mode.  
Fig 16. Iq as a function of VP (stereo headphone)  
Fig 17. VP1 as a function of VP2 (stereo headphone)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
22 of 36  
 
   
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda092  
mda091  
2
1
10  
THD  
(%)  
THD  
(%)  
10  
(1)  
(2)  
(1)  
(2)  
1  
10  
1
1
10  
2  
2  
10  
10  
10  
2
3
4
5
3
2  
10  
1
10  
10  
10  
10  
10  
10  
1
f (Hz)  
P
(W)  
o
f = 1 kHz.  
RL = 32 .  
(1) VP = 3 V, RL = 32 .  
(1) VP = 5 V, THD = 50 mW.  
(2) VP = 3 V, THD = 20 mW.  
(2) VP = 5 V, RL = 32 .  
Fig 18. THD as a function of Po (stereo headphone)  
Fig 19. THD as a function of frequency (stereo  
headphone)  
mda094  
mda093  
2  
1
10  
V
(V)  
I
o
q
(A)  
1  
3  
10  
10  
(1)  
(2) (3)  
(1) (2)  
2  
4  
5  
6  
7  
10  
10  
10  
10  
10  
3  
10  
4  
10  
5  
10  
0
0.5  
1
1.5  
2
2.5  
(V)  
0
1
2
3
V
(V)  
stb  
V
mute  
(1) VP = 12 V.  
(2) VP = 3 V and 6 V.  
(3) VP = 3 V, 6 V and 12 V.  
(1) VP = 3 V.  
(2) VP = 12 V.  
Fig 20. Iq as a function of Vstb (stereo headphone)  
Fig 21. Vo as a function of Vmute (stereo headphone)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
23 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda096  
mda095  
1
0
α
cs  
(dB)  
Gr  
(dB)  
0.5  
20  
0
40  
0.5  
60  
1  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 3 V, Vi = 20 mV.  
VP = 3 V, Vi = 20 mV.  
Fig 22. Channel separation as a function of frequency  
(stereo headphone)  
Fig 23. Channel unbalance as a function of frequency  
(stereo headphone)  
mda098  
mda097  
0.4  
0
P
(W)  
o
SVRR  
(dB)  
0.3  
20  
0.2  
0.1  
0
40  
(1)  
(2)  
60  
80  
2
3
4
5
10  
10  
10  
10  
10  
0
4
8
12  
f (Hz)  
V
(V)  
P
VP = 3 V, Rs = 0 , Vr = 0.2 V (RMS).  
(1) RL = 32 , THD = 10 %.  
(2) RL = 32 , THD = 0.5 %.  
Fig 24. SVRR as a function of frequency (stereo  
headphone)  
Fig 25. Po as a function of VP (stereo headphone)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
24 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda099  
mda130  
2
1.5  
10  
THD  
(%)  
P
(W)  
10  
1
(1)  
(2)  
1
(1)  
(2)  
0.5  
1  
10  
2  
10  
0
3  
2  
1  
10  
10  
10  
1
0
4
8
12  
P
(W)  
V
(V)  
o
P
(1) RL = 25 .  
f = 1 kHz.  
(2) RL = 32 .  
(1) VP = 3 V, RL = 25 .  
(2) VP = 5 V, RL = 25 .  
Fig 26. Total worst case power dissipation as a  
function of supply voltage (SE) (stereo  
headphone)  
Fig 27. THD as a function of Po (BTL mono)  
mda131  
mda132  
1
0
SVRR  
(dB)  
THD  
(%)  
20  
1  
10  
40  
(1)  
(2)  
60  
2  
10  
10  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
(1) VP = 3 V, RL = 25 , THD = 70 mW.  
(2) VP = 5 V, RL = 25 , THD = 150 mW.  
VP = 3 V, Rs = 0 , Vr = 0.2 V (RMS).  
Fig 28. THD as a function of frequency (BTL mono)  
Fig 29. SVRR as a function of frequency (BTL mono)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
25 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda134  
mda133  
1.6  
1
P
o
(W)  
P
(W)  
1.2  
0.8  
0.4  
0
0.75  
(1)  
(2)  
0.5  
(1)  
(2)  
0.25  
0
0
4
8
12  
0
4
8
12  
V
(V)  
V
(V)  
P
P
(1) THD = 10 %, RL = 25 .  
(1) RL = 25 .  
(2) THD = 0.5 %, RL = 25 Ω.  
(2) RL = 32 Ω  
Fig 30. Po as a function of supply voltage (BTL mono)  
Fig 31. Total worst case power dissipation as a  
function of supply voltage (BTL mono)  
13.16 Response curves for high input mode  
mda119  
mda120  
0.8  
2
P
(W)  
P
(W)  
o
1.6  
1.2  
0.6  
(1)  
(2)  
0.4  
0.2  
0
(1)  
(2)  
0.8  
0.4  
0
0
4
8
12  
16  
0
4
8
12  
16  
V
(V)  
V
(V)  
P
P
(1) RL = 32 , THD = 10 %.  
(1) RL = 25 .  
(2) RL = 32 , THD = 0.5 %.  
(2) RL = 32 .  
Fig 32. Po as a function of VP (SE) (BTL mono)  
Fig 33. Total worst case power dissipation as a  
function of supply voltage (SE) (stereo  
headphone)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
26 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda122  
mda121  
2
1
10  
THD  
(%)  
THD  
(%)  
10  
(1)  
(2)  
1  
10  
1
1  
10  
2  
2  
10  
10  
10  
2
3
4
5
3  
2  
1  
10  
10  
10  
10  
10  
10  
10  
1
f (Hz)  
P
(W)  
o
VP = 10 V, RL = 32 , f = 1 kHz.  
VP = 10 V, RL = 32 .  
(1) Po = 100 mW.  
(2) Po = 50 mW.  
Fig 34. THD as a function of Po (stereo headphone)  
Fig 35. THD as a function of frequency (stereo  
headphone)  
mda123  
mda124  
0
0
α
cs  
(dB)  
SVRR  
(dB)  
20  
20  
40  
40  
60  
60  
80  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 10 V, Vi = 20 mV.  
VP = 10 V, Rs = 0 , Vr = 0.2 V (RMS).  
Fig 36. Channel separation as a function of frequency  
(stereo headphone)  
Fig 37. SVRR as a function of frequency (stereo  
headphone)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
27 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda126  
mda125  
2
1
10  
THD  
(%)  
THD  
(%)  
10  
1
(1)  
(2)  
1  
10  
1  
10  
2  
2  
10  
10  
10  
2
3
4
5
2  
1  
10  
10  
10  
10  
10  
10  
1
10  
f (Hz)  
V
(V)  
o
(1) VP = 12 V, RL = 1 k.  
VP = 12 V, Vo = 1 V.  
(2) VP = 18 V, RL = 1 k.  
Fig 38. THD as a function of Vo (stereo line driver)  
Fig 39. THD as a function of frequency (stereo line  
driver)  
mda127  
mda128  
0
0
α
(dB)  
SVRR  
(dB)  
20  
20  
40  
40  
60  
60  
80  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 12 V, Vi = 20 mV.  
VP = 12 V, Rs = 0 , Vr = 0.2 V (RMS).  
Fig 40. Channel separation as a function of frequency  
(stereo line driver)  
Fig 41. SVRR as a function of frequency (stereo line  
driver)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
28 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
mda129  
10  
V
o
(V)  
8
6
4
(1)  
(2)  
2
0
0
4
8
12  
16  
20  
V
(V)  
P
(1) THD = 10 %, RL = 1 k.  
(2) THD = 0.5 %, RL = 1 k.  
Fig 42. Vo as a function of VP (stereo line driver)  
14. Test information  
14.1 Quality information  
The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
29 of 36  
 
   
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
15. Package outline  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
v
c
y
H
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT109-1  
076E07  
MS-012  
Fig 43. Package outline SOT109-1 (SO16)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
30 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow temperatures range from 215 °C to 260 °C depending on solder paste  
material. The peak top-surface temperature of the packages should be kept below:  
Table 8.  
SnPb eutectic process - package peak reflow temperatures (from J-STD-020C  
July 2004)  
Package thickness  
< 2.5 mm  
Volume mm3 < 350  
240 °C + 0/5 °C  
225 °C + 0/5 °C  
Volume mm3 350  
225 °C + 0/5 °C  
225 °C + 0/5 °C  
2.5 mm  
Table 9.  
Pb-free process - package peak reflow temperatures (from J-STD-020C July  
2004)  
Package thickness  
Volume mm3 < 350  
Volume mm3 350 to  
2000  
Volume mm3 > 2000  
< 1.6 mm  
260 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
245 °C + 0 °C  
260 °C + 0 °C  
245 °C + 0 °C  
245 °C + 0 °C  
1.6 mm to 2.5 mm  
2.5 mm  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
31 of 36  
 
       
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
16.5 Package related soldering information  
Table 10. Suitability of surface mount IC packages for wave and reflow soldering methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
32 of 36  
 
   
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
33 of 36  
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
17. Revision history  
Table 11. Revision history  
Document ID  
TDA8559_3  
Release date  
20060515  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
TDA8559_2  
Modifications:  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors.  
DIP16 (SOT39-1) package removed  
TDA8559_2  
(9397 750 02066)  
19970627  
Product specification  
-
-
TDA8559_1  
-
TDA8559_1  
19960102  
Preliminary specification  
(9397 750 00546)  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
34 of 36  
 
 
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.semiconductors.philips.com.  
malfunction of a Philips Semiconductors product can reasonably be expected  
18.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. Philips Semiconductors accepts no liability for inclusion and/or use  
of Philips Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is for the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Philips Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Philips Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local Philips Semiconductors  
sales office. In case of any inconsistency or conflict with the short data sheet,  
the full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — Philips Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
pertaining to warranty, intellectual property rights infringement and limitation  
of liability, unless explicitly otherwise agreed to in writing by Philips  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, Philips Semiconductors does not give any representations  
or warranties, expressed or implied, as to the accuracy or completeness of  
such information and shall have no liability for the consequences of use of  
such information.  
Semiconductors. In case of any inconsistency or conflict between information  
in this document and such terms and conditions, the latter will prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — Philips Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
19. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: [email protected]  
TDA8559_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheets  
Rev. 03 — 15 May 2006  
35 of 36  
 
           
TDA8559T  
Philips Semiconductors  
Low-voltage stereo headphone amplifier  
20. Contents  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
loudspeaker capacitor) . . . . . . . . . . . . . . . . . 14  
loudspeaker capacitor) . . . . . . . . . . . . . . . . . . 14  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© Koninklijke Philips Electronics N.V. 2006.  
All rights reserved.  
Date of release: 15 May 2006  
Document identifier: TDA8559_3  
 
 

Peavey Computer Monitor 15PM User Manual
Pfaff Sewing Machine 489 User Manual
Philips Cell Phone CT9A9RBLK User Manual
Philips Computer Drive FMXXFD02B 00 User Manual
Philips Portable DVD Player PET320 37B User Manual
Philips TV VCR Combo 14PV201 User Manual
Pioneer CD Player JD M300 User Manual
Pioneer Stereo System X Z9 User Manual
Praktica Digital Camera D00390 User Manual
PYLE Audio Music Pedal PPDLWW1 User Manual